Off-Lattice KMC Simulation of the Growth Process of Ti-Si-N Film

2011 ◽  
Vol 403-408 ◽  
pp. 3636-3641
Author(s):  
Shi Yang Sun ◽  
Xue Jie Liu ◽  
Xin Tan ◽  
Hui Ling Jia ◽  
Xiao Feng Tan

In order to investigate the progress of the composite films growth, and the influence of the process parameters to the film‘s structure, this paper uses the off-lattice KMC method to research the Ti-Si-N nanocomposite film, and calculate the influence of deposition temperatures, deposition rate and Si content to the film’s surface roughness, nucleation size and density of initial stage. The results show that with deposition temperature and deposition rate ascend, it can increase transition event, decrease the film’s surface roughness. Si content works on nucleation in initial stage, and the more Si contents, the larger of nucleation rate and the smaller of the grain crystal.

Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 31
Author(s):  
Arvaidas Galdikas ◽  
Mantas Sriubas ◽  
Gediminas Kairaitis ◽  
Darius Virbukas ◽  
Kristina Bockute ◽  
...  

The morphology of aluminum co-doped scandium stabilized zirconia (ScAlSZ) thin films formed by e-beam deposition system was investigated experimentally and theoretically. The dependencies of surface roughness, and the films’ structure on deposition temperature and deposition rate were analyzed. It was shown experimentally that the dependence of the surface roughness on deposition temperature and deposition rate was not monotonic. Those dependencies were analyzed by mathematical modeling. The mathematical model includes the processes of phase separation, adsorption and diffusion process due to the film surface curvature. The impacts of substrate temperature, growth rate on surface roughness of thin films and lateral nanoparticle sizes are shown by the modeling results. Modeling showed that the roughness of the surface of grown films became higher in most cases as the substrate’s temperature rose, but the higher deposition rate resulted in lower surface roughness in most cases. The results obtained by simulations were compared to the relevant experimental data. The non-linear relationships between surface roughness of grown films and lateral size of nanoparticles were also shown by our modeling results, which suggested that the variation in the surface roughness depending on the substrate temperature and growth rate was related to the lateral size of nanoparticles.


1990 ◽  
Vol 181 ◽  
Author(s):  
Jae H. Sone ◽  
Hyeong J. Kim

ABSTRACTWSix thin films were deposited on SiO2/Si substrates by Low Pressure Chemical Vapor Deposition (LPCVD) using WF6 and SiH4 gases. The deposition mechanism has been studied by measuring the thickness, resistivity and composition of the films by varying deposition temperature and gas flow rate at a constant total reactant gas pressure. Below 300°C, the surface chemical reaction was the rate-limiting process and the deposition rate increased exponentially with temperature having a thermal activation energy of 3.2 kcal/mol. Meanwhile, above 300°C the reaction was governed by the mass transfer step in the gas. The deposition rate in this range is insensitive to the deposition temperature but shows dependence of the flow rate of reactant gases. AES and RBS analyses were performed to determine the stoichiometry of WSix thin film. The Si content in film gradually increased as the deposition temperature increased. The resistivity of as-deposited WSix film has dependence on both deposition temperature and Si/W ratio, and exponentially increased with a moderate slope. However, temperature insensitive behavior of resistivity appeared in the mass transfer controlled region. Such resistivity changes with temperature were discussed with the Si/W ratio and the microstructure of films.


Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1631
Author(s):  
Qiang Zhang ◽  
Yohanes Pramudya ◽  
Wolfgang Wenzel ◽  
Christof Wöll

Metal organic frameworks have emerged as an important new class of materials with many applications, such as sensing, gas separation, drug delivery. In many cases, their performance is limited by structural defects, including vacancies and domain boundaries. In the case of MOF thin films, surface roughness can also have a pronounced influence on MOF-based device properties. Presently, there is little systematic knowledge about optimal growth conditions with regard to optimal morphologies for specific applications. In this work, we simulate the layer-by-layer (LbL) growth of the HKUST-1 MOF as a function of temperature and reactant concentration using a coarse-grained model that permits detailed insights into the growth mechanism. This model helps to understand the morphological features of HKUST-1 grown under different conditions and can be used to predict and optimize the temperature for the purpose of controlling the crystal quality and yield. It was found that reactant concentration affects the mass deposition rate, while its effect on the crystallinity of the generated HKUST-1 film is less pronounced. In addition, the effect of temperature on the surface roughness of the film can be divided into three regimes. Temperatures in the range from 10 to 129 °C allow better control of surface roughness and film thickness, while film growth in the range of 129 to 182 °C is characterized by a lower mass deposition rate per cycle and rougher surfaces. Finally, for T larger than 182 °C, the film grows slower, but in a smooth fashion. Furthermore, the potential effect of temperature on the crystallinity of LbL-grown HKUST-1 was quantified. To obtain high crystallinity, the operating temperature should preferably not exceed 57 °C, with an optimum around 28 °C, which agrees with experimental observations.


2012 ◽  
Vol 523 ◽  
pp. 1-10 ◽  
Author(s):  
Dmytro Demirskyi ◽  
Hanna Borodianska ◽  
Dinesh Agrawal ◽  
Andrey Ragulya ◽  
Yoshio Sakka ◽  
...  

2014 ◽  
Vol 936 ◽  
pp. 264-268
Author(s):  
Hua Cheng ◽  
Yong Chan Qian ◽  
Jun Xue

Microcrystalline Si films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using Ar diluted SiH4gaseous mixture. The effects of the substrate on deposition rate, preferred orientation and roughness of the films were investigated. The results show that, the influence of the substrate surface chemical nature on the deposition rate is significant in the initial stage of the growth. And considering the crystallinity and roughness of the films, the substrate is favored in its preferred orientation with a rougher surface. Based on these results, it is confirmed that the combination of diffusion and etching is indispensable to describe the deposition of μc-Si with SiH4diluted by Ar, and the mechanism of μc-Si growth could be controlled by diffusion of Si and etching of the Ar+on the film surface.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1183
Author(s):  
Peiyu Wang ◽  
Xin Wang ◽  
Fengyin Tan ◽  
Ronghua Zhang

Molybdenum disulfide (MoS2) thin films were deposited at different temperatures (150 °C, 225 °C, 300 °C, 375 °C, and 450 °C) on quartz glass substrates and silicon substrates using the RF magnetron sputtering method. The influence of deposition temperature on the structural, optical, electrical properties and deposition rate of the obtained thin films was investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), Raman, absorption and transmission spectroscopies, a resistivity-measuring instrument with the four-probe method, and a step profiler. It was found that the MoS2 thin films deposited at the temperatures of 150 °C, 225 °C, and 300 °C were of polycrystalline with a (101) preferred orientation. With increasing deposition temperatures from 150 °C to 300 °C, the crystallization quality of the MoS2 thin films was improved, the Raman vibrational modes were strengthened, the deposition rate decreased, and the optical transmission and bandgap increased. When the deposition temperature increased to above 375 °C, the molecular atoms were partially combined with oxygen atoms to form MoO3 thin film, which caused significant changes in the structural, optical, and electrical properties of the obtained thin films. Therefore, it was necessary to control the deposition temperature and reduce the contamination of oxygen atoms throughout the magnetron sputtering process.


1997 ◽  
Vol 467 ◽  
Author(s):  
David O'Meara ◽  
Chow Ling Chang ◽  
Roc Blumenthal ◽  
Rama I. Hegde ◽  
Lata Prabhu ◽  
...  

ABSTRACTSingle wafer amorphous silicon deposition was characterized through process modeling and film characterization for application in semiconductor production. DOE methodology was used to determine the main deposition parameters, and the responses were limited to device production requirement properties of surface roughness, deposition rate and degree of crystallinity of the as-deposited film. The data trends and models show that deposition temperature and silane flow are the main factors. Increasing either or both factor increases the deposition rate and the surface roughness. The surface morphology, evaluated by AFM, SEM and TEM, was found to be rougher at extreme growth conditions than the poly crystalline film formed after anneal. The as-deposited surface morphology was not a result of pre-anneal crystal formations as determined by TEM cross sections of samples before and after anneal. Lack of crystalinity is important for impurity diffusion considerations. Device application of the single wafer a-Si process will be a compromise between growth rate (and associated throughput) and surface roughness that can be tolerated.


1996 ◽  
Vol 446 ◽  
Author(s):  
Tingkai Li ◽  
Pete Zawadzkp ◽  
Richard A. Stall ◽  
Yongfei Zhu ◽  
Seshu B. Desu

AbstractNanoscale oxide thin films such as Ba1‐xSrxTiO3 (BST), SrBi2Ta2O9 (SBT), and PbZr1‐xTixO3 (PZT) that have a high dielectric constant and excellent ferroelectric properties have been receiving greatly increased attention, especially for high density memories in next generation integrated circuits. However, with increasing deposition temperature the surface roughness of the films increases, which results in high leakage current, and when the thickness of oxide films is decreased, the apparent bulk‐like properties of thin films tend to worsen due to the increased influence of the interface. To solve these problems, novel MOCVD techniques, plasma enhanced deposition, and a two step process, were developed for high quality oxide thin films.


2011 ◽  
Vol 239-242 ◽  
pp. 720-723
Author(s):  
Li Wang ◽  
Wen Fu ◽  
Li Chen

In order to get a clear picture for describing the growth process of plasma electrolytic oxidation coatings under escalating voltage waveform, the characteristics of PEO coatings formed at different reaction stages were systemically investigated. The morphology and corrosion resistance of the films were studied by scanning electron microscope and potentiodynamic polarization curves. The uniform, semi-transparent and better corrosion resistance of the oxide films on the magnesium electrode surface were formed owe to the extended anodizing time at the initial stage under escalating voltage mode. After sparking occurred, generated ceramic coatings were brokedown, melted, cooled and solidified continuously, so the ceramic coatings were uniform and dense. It also exhibited superior corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document