Elastic Modulus Calculation of GRT Fiber-Rubberized Haydite Concrete

2012 ◽  
Vol 450-451 ◽  
pp. 423-427
Author(s):  
Bing Hua Xia ◽  
Yuan Cai Liu ◽  
Qing Wen Zhang

Experiment with intensity level for the LC30 ceramsite concrete as the research object, changing the content of cement, GRT fiber, rubber powder by the orthogonal test to configure GRT fiber—rubberized haydite concrete samples, maintenance samples 28d in standard conditions and respectively testing their modulus of elasticity、standard compressive strength and apparent density. Through the analysis of the test data, using regression method to establish the GRT fiber—rubberized haydite concrete static compression modulus of elasticity experiential formula and use new test data to compare the value of calculation. By comparing test values and calculated values proved availability of the regression formula.

2010 ◽  
Vol 163-167 ◽  
pp. 1655-1660
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Xiao Ning Zheng ◽  
Yan Dong Li

The mechanical properties of high strength concrete(HSC) were experimentally investigated under mixed erosion and freeze-thaw cycling according to ASTM C666(Procedure B), the erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. The mass loss, relative dynamic modulus of elasticity, compressive strength, elastic modulus and other relative data were measured. The results showed that with the increasing number of freeze-thaw cycles, the surface scaled more seriously; the mass loss, compressive strength and elastic modulus continued to decrease; the relative dynamic modulus of elasticity increased slightly in the first 225 freeze-thaw cycles, then decreased in the following 75 cycles; the corresponding strain to peak stress decreased with the increase of freeze-thaw cycles. After 200 cycles, the rate of deterioration of concrete accelerated obviously.


2012 ◽  
Vol 472-475 ◽  
pp. 60-65
Author(s):  
Bing Hua Xia ◽  
Yuan Cai Liu ◽  
De Bin Zhu

Experiment with intensity level for the LC30 ceramsite concrete as the research object, changing the content of cement, GRT fiber, rubber powder by the orthogonal test to configure GRT fiber—rubberized haydite concrete samples, maintenance samples 7d and 28d in standard conditions and respectively testing their standard compressive strength. Through the analysis of the test data, using multiple regression analysis established the GRT fiber—rubberized haydite concrete 7d and 28d standard compressive strength regression formulas.By means of BP neural network theory combine MATLAB programme established GRT fiber—rubberized haydite concrete 7d and 28d standard compressive strength neural network model.Finally using 3 groups new test data to compare the value of multiple regression equations and BP neural network’s predicted value.The results indicate that the multiple regression equations and BP neural network model are availabled.


2010 ◽  
Vol 97-101 ◽  
pp. 1620-1623 ◽  
Author(s):  
Hong Zhi Cui ◽  
Feng Xing

Many investigations have been conducted on compressive strength of lightweight aggregate concretes (LWAC), but there are few experimental studies on the relationship between compressive strength, bond strength and elastic modulus of LWAC. In this paper, the specimens of twenty kinds of LWACs with different mix proportions were made. Properties of compressive strength, bond strength and modulus of elasticity of the LWACs were tested. Based on the testing resulting, equations for relationship between bond strength and compressive strength of the LWAC were established. For LWAC modulus of elasticity, the experimental results of this study can fit well with predicted equation of ACI 318


2018 ◽  
Vol 272 ◽  
pp. 76-81
Author(s):  
Dalibor Kocáb ◽  
Libor Topolář ◽  
Barbara Kucharczyková ◽  
Petr Pőssl ◽  
Michaela Hoduláková

The paper describes an experiment focused on observing the development of the elastic modulus and compressive strength in a polymer-cement mortar during the first 28 days of aging. The specimens (aged 3 and 28 days) were tested for the static and dynamic modulus of elasticity using two methods – the ultrasonic pulse velocity test and the resonance method. During the test of the modulus of elasticity in compression the mortar’s behaviour was also examined by means of the acoustic emission method, which is based on the recording of mechanical pulses caused by dilation waves generated by microcracks that form during loading. The outcome of the experiment is an evaluation of the polymer-cement mortar’s behaviour in terms of the development of its elastic modulus and compressive strength as well as in terms of the material’s acoustic response during loading.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6933
Author(s):  
Yurii Barabanshchikov ◽  
Hien Pham ◽  
Kseniia Usanova

This work aimed to study the effect of a microfibrillated cellulose additive on strength, elastic modulus, heat release, and shrinkage of mortar and concrete. The dosage of the additive varies from 0.4 to 4.5% by weight of the cement. The change in strength with an increase in the dosage of the additive occurred in a wave-like manner. The uneven character of the change in the results also took place in the determination of heat release and shrinkage. In general, heat release and shrinkage decreased at increasing additive dosage. The additive showed the greatest decrease in the heat release of concrete at a content of 2%. The heat release of concrete practically differed little from the exotherm of the standard at an additive content of 1 and 1.5%. The addition of microfibrillated cellulose additive in small (0.5%) and large (1.5%) amounts reduced shrinkage compared to the reference, and at an intermediate content (1%), the shrinkage was higher than in the reference specimens. In this case, the water evaporation rate from concrete increased with an increase in the additive. With an increase in the additive dosage, the modulus of elasticity decreases. Thus, the microfibrillated cellulose additive provides concrete with lower values of the modulus of elasticity, heat release, and shrinkage, and the additive is recommended for use in concretes with increased crack resistance during the hardening period. The recommended additive content is 0.5% by weight of cement. At the specified dosage, it is possible to provide the class of concrete in terms of compressive strength C35/45.


2021 ◽  
Author(s):  
Zhong-Hua Li ◽  
Zhicheng Yang ◽  
Bin Liu ◽  
Jia-Xin Li ◽  
Ze-Zhou Kuai ◽  
...  

Abstract The relative density grading of metal lattice structures becomes a favourable design for bone plants since these structures are suitable for human implantation and have good biological compatibility. The unit cell structure designed using this method is better than that designed by traditional 3D modelling software, especially when using a bionic unit cell design created by a triple periodic minimum surface (TPMS). In this study, the manufacturability of Gyroids was tested by studying three different designs: the relative density of 30%, 20%, and 10% sheet structure. The main purpose is to understand the influence of relative density on the static compression performance of the sheet-like Gyroids structure. This study qualitatively analyses the influence of the relative density of the Gyroids lattice structure prepared by the selective laser melting technology on the compressive strength, elastic modulus, energy absorption and failure mechanism. As the relative density of the sheet structure decreases, the compressive strength decreases. The elastic modulus of the sheet structure of 10% is slightly higher than that of 20%, showing a different trend from the compressive strength. At the same time, the energy absorption per unit volume increases when the relative density decreases and becomes smaller, and the failure modes of the three relative densities all show a 45° fracture failure.


2017 ◽  
Vol 898 ◽  
pp. 2071-2075 ◽  
Author(s):  
Xiao Rong Li ◽  
Xing Qi Huang ◽  
Da Wei Zhang ◽  
Chang Jun Xue ◽  
Ai Qin Zhang

Experimental research was conducted using concrete produced by adding the polycarboxylic-type water-reducing agent. The cement, sand, aggregates, fillers and water-reducing agent were used as the important raw materials for the concrete. Then the following properties of the concrete were analyzed: compressive strength, elastic modulus and frost resistance. The compressive strength was 84 MPa at 56 days and the modulus of elasticity was 45.3 GPa at 28 days. Therefore, the water-reducing agent played an important role for the concrete. All the properties met the technical requirements of the CRTS III track plate.


2013 ◽  
Vol 800 ◽  
pp. 361-364
Author(s):  
Lin Chun Zhang

A series of experiments were carried out to investigate the effect of wollastonite and fly ash combination on the compressive strength, flexural strength, modulus of elasticity, coming off amount, loss percentage of dynamic elastic modulus as well as surface scaling of concrete. The studies show that the effect of mixing wollastonite and fly ash can reach excellent mechanical and durability performance. The effect of mixing wollastonite and fly ash improve the mechanical and durability is better than mixing fly ash alone. The concrete mixes containing wollastonite and fly ash indicated that wollastonite addition 15% was found advantageous in improving concrete quality.


2014 ◽  
Vol 893 ◽  
pp. 585-592
Author(s):  
Abdullah F. Saud ◽  
Hakim S. Abdelgader ◽  
Ali S. El-Baden

An experimental investigation was conducted to evaluate the compressive, tensile strength and modulus of elasticity of two-stage concrete (TSC) at different water-to-cement ratios. The primary objectives were to measure the elastic modulus, compressive strength and splitting tensile strength of TSC and to determine if there is a quantifiable relationship between compressive and tensile strength. Behavior of TSC in compression has been well documented, but there are little published data on its behavior in tension and modulus of elasticity. This paper presents the experimental results of preplaced, crushed granite aggregate concreted with five different mortar mixture proportions. A total of 48 concrete cylinders were tested in unconfined compression modulus of elasticity and splitting tension at 28 and 90 days. It was found that the modulus of elasticity and splitting tensile strength of two-stage concrete is equivalent or higher than that of conventional concrete at the same compressive strength. Splitting tensile strength can be conservatively estimated using the ACI equation for conventional concrete.


Author(s):  
P .S.K.Murthy ◽  
Sachin Gupta ◽  
Dhirendra Kumar ◽  
Mahabir Dixit

The interconnection of vesicles in basaltic flows greatly affects the engineering properties such as uniaxial compressive strength, modulus of elasticity, Poisson’s ratio, tensile strength and sonic velocities. Sometimes these vesicles are filled with secondary minerals such as quartz/olivine/calcite form as amygdules (which are impermeable). In the present study, to understand effect of porosity, vesicular and amygdular basaltic flows collected from central and west-central India were investigated for these engineering properties and correlated with apparent porosity of core samples. It is observed that a good level of correlation is obtained for uniaxial compressive strength (UCS), elastic modulus (E) and Poisson’s ratio in vesicular basalts when porosity >8-10%. In case of Brazilian strengths a linearly downward trend is observed with the increase in porosity values. And, no significant correlation is observed for waves’ velocities in both variants of basalts.


Sign in / Sign up

Export Citation Format

Share Document