Preparation and Characterization of poly(L-lactide) /poly (ε-caprolactone) Composite Films for Food Packaging Application

2013 ◽  
Vol 750-752 ◽  
pp. 845-848 ◽  
Author(s):  
Ji Yi Yang ◽  
Yu Yue Qin ◽  
Jian Xin Cao ◽  
Ming Wei Yuan ◽  
Shi Qi Liu ◽  
...  

Poly (L-lactide) (PLLA) and poly (ε-caprolactone) (PCL) were produced by solution mixing and cast into films. The films were characterized by morphological, mechanical, and barrier behavior tests to evaluate the effect of the PCL. The micrographs of the fractured surfaces showed the morphology of the phase separated system, with the dispersed PCL phase higher than 30%. The elongation at break of PLLA was improved significantly (p<0.05) in the blends while the tensile strength decreased significantly (p<0.05) with increase of PCL content. WVP of PLLA/PCL films significantly decreased (p< 0.05) by blending with PCL. When the ratio of PLLA/PCL increased from 100/0 to 50/50, WVP of PLLA/PCL films decreased from 1.85±0.15 (×10-14kgm/m2sPa) to 1.27±0.06 (×10-14kgm/m2sPa). The results showed that PLLA/PCL blend can be a novel composite film for food packaging applications.

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 84
Author(s):  
Sijun Ma ◽  
Yuanrong Zheng ◽  
Ran Zhou ◽  
Ming Ma

Four kinds of edible composite films based on chitosan combined with additional substances (konjac glucomannan, cassava starch, maltodextrin and gelatin) and the addition of lysozyme were prepared and used as packaging materials for Mongolian cheese. The prepared composite films were evaluated using scanning electron microscopy and Fourier transform infrared spectroscopy. The physicochemical properties of all chitosan composite films, including thickness, viscosity, opacity, color, moisture content, water vapor permeability, tensile strength and elongation at break, were measured. The results show that Konjac glucomannan–chitosan composite film presented the strongest mechanical property and highest transparency. The cassava starch–chitosan composite film presented the highest water barrier property. The study on the storage characteristics of Mongolian cheese was evaluated at 4 °C. The results show that the cheese packaging by cassava starch–chitosan composite film presented better treatment performance in maintaining the quality, reducing weight loss and delayering microbial growth.


2020 ◽  
Vol 850 ◽  
pp. 87-93
Author(s):  
Thi Luong Nguyen ◽  
Hoc Thang Nguyen ◽  
Van Khoi Nguyen ◽  
Thi Thu Ha Pham ◽  
Thi Hong Thuy Le ◽  
...  

This article is aimed at evaluating newly synthesized HPMC/BW composite films, applied for preservation of seedless lime fruit. Factors influenced to formation of the films as well as characteristics of HPMC/BW edible composite films were researched and analyzed based on experimental results and previous studies. The HPMC/BW edible composite films were created based on the components included HPMC (5% w/v), Glycerol plasticizer (Gly-2% v/v), BW (5% w/v); Oleic Acid emulsifier (OA-1% v/v). Characteristics of the composite film were evaluated via the analytical techniques known as Sensory, Tensile Strength (TS), Elongation at Break (EB), ThermoGravimetric Analyzer (TGA), Scanning Electron Microscope (SEM), Fourier Transform InfraRed (FTIR). HPMC/BW composite films applied in preserving seedless limes. Evaluations of preservation processes were based on effects of characteristics such as Sensory evaluation, Respiratory intensity, Weight loss, Vitamin C content, Total acid of before and after fruits preservation.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Lizhu Liu ◽  
Ling Weng ◽  
Yuxia Song ◽  
Lin Gao ◽  
Qingquan Lei

PI/nano-Al2O3hybrid films were prepared by ultrasonic-mechanical method. Before addition, nano-Al2O3particles were firstly modified with different coupling agents. The micromorphology, thermal stability, mechanical properties, and electric breakdown strength of hybrid films were characterized and investigated. Results indicated that nano-Al2O3particles were homogeneously dispersed in the PI matrix by the addition of coupling agents. The thermal stability and mechanical properties of PI/nano-Al2O3composite films with KH550 were the best. The tensile strength and elongation at break of PI composite film were 119.1 MPa and 19.1%, which were 14.2% and 78.5% higher than unmodified PI composite film, respectively.


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2363 ◽  
Author(s):  
Xue Liang ◽  
Shiyi Feng ◽  
Saeed Ahmed ◽  
Wen Qin ◽  
Yaowen Liu

Composite films containing different amounts of potassium sorbate (KS) were prepared by using fish scale collagen (Col) and polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR), light transmittance, mechanical, water vapor transmission rate (WVTR), and the antibacterial properties of the composite films were analyzed. The results showed that the addition of Col significantly reduced the light transmittance of the composite film, but KS had no significant effect on the light transmission. The tensile strength decreased first and then increased with the addition of KS, while the WVTR increased first and then decreased. The composite film exhibited a certain degree of antibacterial properties against E. coli and S. aureus. In addition, we found that ultrasonic treatment reduced the WVTR, and also improved tensile strength and elongation at break of the composite films, but had no significant effect on other properties. The KS/Col/PVA films have the potential to be used as antimicrobial food packaging.


2020 ◽  
Vol 21 (8) ◽  
pp. 741-747
Author(s):  
Liguang Zhang ◽  
Yanan Shen ◽  
Wenjing Lu ◽  
Lengqiu Guo ◽  
Min Xiang ◽  
...  

Background: Although the stability of proteins is of significance to maintain protein function for therapeutical applications, this remains a challenge. Herein, a general method of preserving protein stability and function was developed using gelatin films. Method: Enzymes immobilized onto films composed of gelatin and Ethylene Glycol (EG) were developed to study their ability to stabilize proteins. As a model functional protein, β-glucosidase was selected. The tensile properties, microstructure, and crystallization behavior of the gelatin films were assessed. Result: Our results indicated that film configurations can preserve the activity of β-glucosidase under rigorous conditions (75% relative humidity and 37°C for 47 days). In both control films and films containing 1.8 % β-glucosidase, tensile strength increased with increased EG content, whilst the elongation at break increased initially, then decreased over time. The presence of β-glucosidase had a negligible influence on tensile strength and elongation at break. Scanning electron-microscopy (SEM) revealed that with increasing EG content or decreasing enzyme concentrations, a denser microstructure was observed. Conclusion: In conclusion, the dry film is a promising candidate to maintain protein stabilization and handling. The configuration is convenient and cheap, and thus applicable to protein storage and transportation processes in the future.


2013 ◽  
Vol 750-752 ◽  
pp. 1919-1923 ◽  
Author(s):  
Guo Xian Zhou ◽  
Ming Wei Yuan ◽  
Lin Jiang ◽  
Ming Long Yuan ◽  
Hong Li Li

The laponite-poly (L-lactide) composite films are prepared by the method of solution blending with polylactide (PLA) and laponite. The result shows that the homogeneous and smooth composite film is prepared with 1, 4-dioxane. Thermogravimetry analysis (TG) and tensile strength studies demonstrate that the thermal stability and tensile strength are improved with the laponite added. The scanning electron microscopy (SEM) measurement indicates that the pores of composite films get uniform and network structure is more and more compact with compared to pure PLA film. The present study reveals that the laponite as a complexing agent can improve the mechanical properties and thermal stability of PLA.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Yongfang Qian ◽  
Zhen Zhang ◽  
Laijiu Zheng ◽  
Ruoyuan Song ◽  
Yuping Zhao

Design and fabrication of nanofibrous scaffolds should mimic the native extracellular matrix. This study is aimed at investigating electrospinning of polycaprolactone (PCL) blended with chitosan-gelatin complex. The morphologies were observed from scanning electron microscope. As-spun blended mats had thinner fibers than pure PCL. X-ray diffraction was used to analyze the degree of crystallinity. The intensity at two peaks at 2θof 21° and 23.5° gradually decreased with the percentage of chitosan-gelatin complex increasing. Moreover, incorporation of the complex could obviously improve the hydrophilicity of as-spun blended mats. Mechanical properties of as-spun nanofibrous mats were also tested. The elongation at break of fibrous mats increased with the PCL content increasing and the ultimate tensile strength varied with different weight ratios. The as-spun mats had higher tensile strength when the weight ratio of PCL to CS-Gel was 75/25 compared to pure PCL. Both as-spun PCL scaffolds and PCL/CS-Gel scaffolds supported the proliferation of porcine iliac endothelial cells, and PCL/CS-Gel had better cell viability than pure PCL. Therefore, electrospun PCL/Chitosan-gelatin nanofibrous mats with weight ratio of 75/25 have better hydrophilicity mechanical properties, and cell proliferation and thus would be a promising candidate for tissue engineering scaffolds.


2021 ◽  
Vol 23 (1) ◽  
pp. 16
Author(s):  
Vienna Saraswaty ◽  
Rossy Choerun Nissa ◽  
Bonita Firdiana ◽  
Akbar Hanif Dawam Abdullah

THE PHYSICOCHEMICAL CHARACTERISTICS OF RECYCLED-PLASTIC PELLETS OBTAINED FROM DISPOSABLE FACE MASK WASTES. The government policy to wear a face mask during the COVID-19 pandemic has increased disposable face mask wastes. Thus, to reduce such wastes, it is necessary to evaluate the physicochemical characteristics of disposable face masks wastes before the recycling process and the recycled products. In this study, physicochemical characterization of the 3-ply disposable face masks and the recycled plastic pellets after disinfection using 0.5% v/v sodium hypochlorite were evaluated. A set of parameters including the characterization of surface morphology by a scanning electron microscope (SEM), functional groups properties by a fourier transform infra-red spectroscopy (FT-IR), thermal behavior by a differential scanning calorimetry (DSC), tensile strength and elongation at break were evaluated. The surface morphological of each layer 3-ply disposable face mask showed that the layers were composed of non-woven fibers. The FT-IR evaluation revealed that 3-ply disposable face mask was made from a polypropylene. At the same time, the DSC analysis found that the polypropylene was in the form of homopolymer. The SEM analysis showed that the recycled plastic pellets showed a rough and uneven surface. The FT-IR, tensile strength and elongation at break of the recycled plastic pellets showed similarity with a virgin PP type CP442XP and a recycled PP from secondary recycling PP (COPLAST COMPANY). In summary, recycling 3-ply disposable face mask wastes to become plastic pellets is recommended for handling disposable face mask wastes problem.


2019 ◽  
Vol 35 (1) ◽  
pp. 221-227
Author(s):  
Maulida Lubis ◽  
Mara Bangun Harahap ◽  
Iriany Iriany ◽  
Muhammad Hendra S. Ginting ◽  
Iqbal Navissyah Lazuardi ◽  
...  

Cooking oil waste that has been disposed could contamine the environment. However, if it is processed well, it can potentially become a raw material of polyurethane. The aim of this study was to determine the best polyurethane on the tensile strength, impact strength, elongation at break, water absorption, characterization of Fourier Transform Infra-Red (FTIR) and the characterization of Scanning Electron Microscopy (SEM). The variables used in this study were ambient process temperature with 440 rpm stirring speed, 1-minute stirring time, the ratio of polyoland WCO was 7:3 (% w/w), and the ratio of Toluene Diisocyanate (TDI) and WCO was 1:1; 1:2; 1:3; 1:4 (% w/w). The results obtained from the analysis of the best tensile strength against the polyurethane synthetic was in the 1:1 ratio of mixed variations between oil and TDI with a value of 0.403 MPa. The best impact strength was in the ratio of mixed variations between oil and TDI with 1:4 (% w/w) with a value of 600.975 J/m2. The best elongation at break against polyurethane foam synthetic was in the 1:3 ratio of mixture variations of oil and TDI with a value of 4.506%.


Sign in / Sign up

Export Citation Format

Share Document