Effect of Rolling on Microstructure and Room Temperature Tensile Properties of Newly Developed Mg-4Li-1Ca Alloy

2014 ◽  
Vol 922 ◽  
pp. 537-542 ◽  
Author(s):  
Saurabh Nene ◽  
Bhagwati Prasad Kashyap ◽  
Nityanand Prabhu ◽  
T. Al-Samman ◽  
Yuri Estrin

Mg-30Ca and Mg-14Li (wt %) master alloys were melted successively in the induction furnace to obtain a Mg-Li-Ca ternary alloy containing 3.99 % Li and 1 % Ca. The as-cast material of thickness 4 mm was homogenised at 350° C for 120 mins and subsequently rolled to 62.5 % reduction in thickness at 300 °C to get 1.5 mm thick sheet. The microstructures of hot rolled samples were examined in as-rolled condition as well as after annealing at 350° C for various lengths of time. The presence of deformation twins was clearly seen in the as-rolled structure, whereas equiaxed twin-free grains were observed in the annealed condition. The average grain size was found to increase from 10 μm to 18 μm by annealing, according to the kinetics that follows a parabolic law. Tensile samples taken from rolled plate were deformed to failure at room temperature and a strain rate of 10-4 s-1. Ultimate tensile strength of as-rolled material increased to 213 MPa, while tensile elongation dropped to 6.5 % from the initial values of 134 MPa and 8.5 %, respectively. Annealing after rolling offered a good compromise between the enhanced tensile strength (160 MPa) and tensile ductility (9 %) suggesting viability of the proposed thermomechanical treatment as a means for enhancing both strength and ductility of Mg-4Li-1Ca alloy.

2018 ◽  
Vol 920 ◽  
pp. 244-249 ◽  
Author(s):  
Yaroslav Erisov ◽  
Sergey Surudin ◽  
Fedor Grechnikov

The results of physical simulation of hot compression of semi-finished products, selected from a cast ingot and hot-rolled plate from aluminum-lithium alloy V-1461, in the temperature range of 400-460°C and strain rates of 1-60 s-1are presented. It is established that at a constant strain rate the flow stresses decrease with increasing test temperature, an increase in the strain rate leads to an increase in flow stresses at a constant temperature. The parameters of the hot deformation rheological model, including the Zener-Hollomon parameter and the hyperbolic sine law, are determined. It is established that the parameters of the rheological model for the cast and hot-rolled state differ insignificantly.


2011 ◽  
Vol 306-307 ◽  
pp. 535-538 ◽  
Author(s):  
Sheng Li Li ◽  
Xing Dong Peng ◽  
Yu Chen

To study the transmutation of organization and texture on direct annealing process of hot-rolled plate. Different annealing experiments were done in the lab. The annealed samples are from steel grade of SPHC. To check the organization of the annealed samples by optical microscopy, to measure grain size by Micro-image Analysis & process software. To measure the mechanical properties by the room temperature tensile test. To check AlN by TEM and EDX.To measure texture by texture measuring instrument, and the data was collected on a computer, using two-step calculation of ODF, measured with constant 45° section of graph. When annealing temperature of the samples reaches 875 °C or more, a relatively low strength , high n value, and high r value is received, but if the holding time is longer, grain coarsening occurs at the time,so the annealing temperature is not more than 925°C.When annealing temperature reaches 875 °C, AlN increased slightly, and the texture is not obvious.


2000 ◽  
Vol 646 ◽  
Author(s):  
Y. Kaneno ◽  
T. Takasugi

ABSTRACTB2-type CoTi intermetallic compound that was hot-rolled and recrystallized was tensile-tested as functions of temperature and testing atmosphere. The tensile strength showed a peak at intermediate temperature (∼800K). The brittle-ductile transition (BDT) defined by tensile elongation took place at about 800K, above which large tensile elongation was observed. Corresponding to this transition, SEM fractography showed a change from cleavage-like pattern mixed with intergranular fracture pattern to large cross-sectional reduction, i.e. necking of the tensile specimen. Also, the observed mechanical properties were independent of heat-treatment procedures, indicating that retained vacancies did not affect the mechanical properties of CoTi intermetallic compound. However, the tensile elongation and UTS at room temperature were dependent on testing atmosphere, indicating that moisture-induced embrittlement occurred in CoTi intermetallic compound.


Author(s):  
Dorian K. Balch ◽  
Chris San Marchi

Austenitic stainless steels such as 304L are frequently used for hydrogen service applications due to their excellent resistance to hydrogen embrittlement. However, welds in austenitic stainless steels often contain microstructures that are more susceptible to the presence of hydrogen. This study examines the tensile strength and ductility of a multi-pass gas tungsten arc weld made on 304L cross-rolled plate using 308L weld filler wire. Sub-sized tensile specimens were used to ensure the entire gage section of each tensile specimen consisted of weld metal. Specimens were extracted in both axial and transverse orientations, and at three different depths within the weld (root, center, and top). Yield strength decreased and ductility increased moving from the root to the top of the weld. A subset of specimens was precharged with hydrogen at 138 MPa (20,000 psi) and 300°C prior to testing, resulting in a uniform hydrogen concentration of 7700 appm. The presence of hydrogen resulted in a slight increase in yield and tensile strength and a roughly 50% decrease in tensile elongation and reduction in area, compared to the hydrogen-free properties.


2013 ◽  
Vol 750-752 ◽  
pp. 760-764 ◽  
Author(s):  
Bao Yi Yu ◽  
Qian Qian Luo ◽  
Yang Li ◽  
Yu Juan Wu ◽  
Run Xia Li

In order to improve plastic property of AZ31 alloy tubes at room temperature and expand application of cold rolling process in magnesium (Mg) alloys, solution treatment (T4) and cryogenic treatment of AZ31 tubes obtained by drawing were investigated in this work. The results indicate that T4 can improve the microstructure of the alloy, refine grains and eliminate twins. The optimized T4 parameter is 300 °C for 8 h, in which the average grain size of 12 μm can be obtained and elongation reaches to Max of 16.1% and tensile strength reaches to 242 MPa. Moreover, tensile strength was decreased to 211 MPa, while, elongation was improved to 25.4% by T4+cryogenic treatment at-196 °C.


2012 ◽  
Vol 482-484 ◽  
pp. 1530-1533
Author(s):  
Ming Li Huang ◽  
Hua Ying Li ◽  
Hua Ding

In the present work, mechanical properties and microstructures of hot-rolled and solution-treated Fe-26Mn-6Al-1C steel (6Al steel) were investigated. Tensile tests were carried out at room temperature. The samples were characterized by using XRD, OM, SEM and TEM. The results suggested that the microstructure of the hot rolled 6Al steel was fully austenitic. After solution treatment and deformation, the microstructure was still single austenite. With the increase of the solution treatment temperatures, the strength decreased and the elongation increased. After solution treated at 1100°C for 1h, the yield strength, ultimate tensile strength and elongation were 378MPa, 756MPa and 57%.


2006 ◽  
Vol 503-504 ◽  
pp. 681-686 ◽  
Author(s):  
Yong Suk Kim ◽  
Suk Ha Kang ◽  
Dong Hyuk Shin

The cross-ARB (C-ARB) process, which adopts cross rolling of the two stacked plates, has been performed up to seven cycles on a commercial purity 1050 aluminum alloy to obtain ultrafine grains with an average grain size of 0.7μm. Microstructural evolution of the C-ARB processed aluminum alloy was examined by a transmission electron microscopy as a function of process cycle number (accumulated plastic strain). Tensile property of the severely deformed Al alloy was also explored. Grain size of grains of the C-ARB processed alloy varied across thickness of the rolled plate. The size of grains at the top and bottom of the rolled plate converged to 0.65μm, while that of grains at the center of the plate increased with the number of ARB cycles. Tensile strength of the CARB processed 1050 Al alloy increased from 100MPa (as-received) to 160MPa. Tensile elongation varied with the number of cycles, but 15% of failure strain was measured from the 6-cycle C-ARB processed specimen. The variation of the elongation with the cycle number coincided exactly with the variation of grain size at the center of the processed plate.


2010 ◽  
Vol 654-656 ◽  
pp. 647-650
Author(s):  
Joong Hwan Jun ◽  
Min Ha Lee

Thermal stability of  grains and tensile ductilities at room and elevated temperatures were investigated and compared for Mg-3%Zn-0.4%Zr and Mg-3%Zn-0.4%Zr-1%Bi alloys in hot-rolled state. The Bi-added alloy showed slightly finer-grained microstructure with enhanced thermal stability, which is closely associated with fine Mg-Bi compounds acting as obstacles for the migration of grain boundaries. The Mg-3%Zn-0.4%Zr-1%Bi alloy exhibited better tensile strength at room temperature and tensile ductilities at elevated temperature. Finer and more homogeneous grain structure with higher thermal stability would be responsible for the enhanced tensile properties in the Bi-added alloy.


2007 ◽  
Vol 539-543 ◽  
pp. 2849-2852
Author(s):  
Cha Yong Lim ◽  
Seung Zeon Han ◽  
Seong Hee Lee

The accumulative roll bonding (ARB) process is one of the methods to refine the grain size of metallic materials. The ARB process up to 8 cycles was performed for the pure Cu and Cu- Fe-P (PMC-90) alloy at ambient temperature under no lubricant conditions. In the pure Cu, the nano-sized grains were formed after third cycle with an average grain size of 200nm. Once the 200 nm grains formed, further reduction in the grain size was not observed up to the 8 ARB process cycles. On the other hand, the formation of the stable nano-sized grains in PMC-90 alloy was retarded compared to the pure Cu due to the alloying elements. For both alloys, the tensile strength values increased drastically in the initial stage of ARB process. The tensile strength values of both alloys tended to saturate after the third ARB process cycle. The tensile elongation value greatly decreased by 1 cycle of ARB process due to the strain hardening. After the third cycle of ARB process, each alloy showed a gradual increase in tensile elongation due to the dynamic recovery. For PMC-90 alloy, the strength value is higher than that of OFC due to addition of the alloying elements.


2007 ◽  
Vol 561-565 ◽  
pp. 395-398 ◽  
Author(s):  
N. Matsumoto ◽  
Yasuyuki Kaneno ◽  
Takayuki Takasugi

Zr and/or Nb added Fe3Al based intermetallic alloys (i.e., Fe3Al-Zr, Fe3Al-Nb and Fe3Al-Zr-Nb) were arc-melted, homogenized, hot-rolled and then annealed to evaluate microstructure and tensile property at room temperature as well as at a high temperature (873K). After annealing, the rolled alloys exhibited a recrystallized microstructure containing coarse second phase particles, except for the Nb-added alloy with a minor content of Nb. Relatively high tensile elongation as well as high tensile strength was observed at room temperature in the Zr-added alloys with a minor amount of Zr. Also, these alloys showed relatively high tensile strength and elongation at high temperature (873K). The results suggest that tensile ductility as well as strength of Fe3Al-based alloys can be improved by introduction of the second phase dispersions.


Sign in / Sign up

Export Citation Format

Share Document