An Analytical Approach to the Extrusion Pressure of Bimetallic Tube

2010 ◽  
Vol 443 ◽  
pp. 87-92
Author(s):  
Guo Liang Xie ◽  
Jing Liu ◽  
Jing Tao Han ◽  
Pei Jie Yan

In this paper, the extrusion process of bimetallic tubes is discussed, and the extrusion pressure is calculated based on the method of energy conservation, according to the three categories of metal flow that may occur during the process. A number of parameters, geometry of bimetallic tube, mechanical properties of material components and friction conditions, are highlighted in this analytical method. Compared with the data of TP304l/20G bimetallic tubes which were extruded at 1100-1200 °C, the calculated results show a good agreement with the industrial results, with the error less than 10 %. It also proves that the friction between the two layers play an important role in the process.

2011 ◽  
Vol 66-68 ◽  
pp. 164-169
Author(s):  
Ji Sen Qiao ◽  
Fi Li ◽  
Tian Dong Xia

A numerical model has been build up to study temperature evolution and metal flow for the indirect extrusion of 6005A aluminium alloy. Model validation was carried out by comparison between experiments and simulations. Results show a good agreement with each other. The influence of the extrusion parameters on the profile temperature and metal flow were studied according to the real industrialized process. It was found that the profile temperature increases with the ram speed as well as the peak load of the total press force. However, a too slow extrusion process would cause increasing of the total force at the end of the extrusion because of heat dissipation to the environment. In addition the dead metal zone at the top of the billet was shrunk during the extrusion process. The ram speed would have little influence on the distribution and shape changing of dead metal zone. Once the extrusion went into steady stage, the strain rate of metal flow would keep a stable situation relatively.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1036
Author(s):  
Eduardo Colin García ◽  
Alejandro Cruz Ramírez ◽  
Guillermo Reyes Castellanos ◽  
José Federico Chávez Alcalá ◽  
Jaime Téllez Ramírez ◽  
...  

Ductile iron camshafts low alloyed with 0.2 and 0.3 wt % vanadium were produced by one of the largest manufacturers of the ductile iron camshafts in México “ARBOMEX S.A de C.V” by a phenolic urethane no-bake sand mold casting method. During functioning, camshafts are subject to bending and torsional stresses, and the lobe surfaces are highly loaded. Thus, high toughness and wear resistance are essential for this component. In this work, two austempering ductile iron heat treatments were evaluated to increase the mechanical properties of tensile strength, hardness, and toughness of the ductile iron camshaft low alloyed with vanadium. The austempering process was held at 265 and 305 °C and austempering times of 30, 60, 90, and 120 min. The volume fraction of high-carbon austenite was determined for the heat treatment conditions by XRD measurements. The ausferritic matrix was determined in 90 min for both austempering temperatures, having a good agreement with the microstructural and hardness evolution as the austempering time increased. The mechanical properties of tensile strength, hardness, and toughness were evaluated from samples obtained from the camshaft and the standard Keel block. The highest mechanical properties were obtained for the austempering heat treatment of 265 °C for 90 min for the ADI containing 0.3 wt % V. The tensile and yield strength were 1200 and 1051 MPa, respectively, while the hardness and the energy impact values were of 47 HRC and 26 J; these values are in the range expected for an ADI grade 3.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3560
Author(s):  
Tomasz Skrzekut ◽  
Grzegorz Boczkal ◽  
Adam Zwoliński ◽  
Piotr Noga ◽  
Lucyna Jaworska ◽  
...  

Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C. Fractography analysis of materials at room temperature and 400 °C was carried out. The research took into account the anisotropy of the materials obtained in the extrusion process. For the nonequilibrium SPS process, ZrCu2 and Cu10Zr7 intermetallic compounds formed in the material at sintering temperature. Extruded materials were composed mainly of α-Zr and ZrCu2. The presence of intermetallic compounds affected the reduction in the strength properties of the tested materials. The highest strength value of 205 MPa was obtained for the extruded Zr-2.5Cu, for which the samples were cut in the direction of extrusion. For materials with 10 wt.% copper, more participation of the intermetallic phase was formed, which lowered the mechanical properties of the obtained materials. In addition to brittle intermetallic phases, the materials were characterized by residual porosity, which also reduced the strength properties.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2020 ◽  
Vol 62 (4) ◽  
pp. 395-399
Author(s):  
Jiehui Liu ◽  
Hongjun Hu ◽  
Yang Liu ◽  
Dingfei Zhang ◽  
Zhongwen Ou ◽  
...  

Abstract Compound extrusion (CE) is a newly developed plastic deformation technique which combines direct extrusion (DE) with a two-pass equal channel angular extrusion (ECAE). This paper focuses on the strength, ductility and anti-corrosion properties of an NaCl solution at certain concentrations and the wear-resistance of dry sliding AZ61 magnesium alloy prepared by CE and DE. It is found that the strength and elongation of the AZ61 alloy prepared by CE are enhanced because of grain refinement. Furthermore, AZ61 magnesium alloy made by CE displays higher corrosion and wear resistance than that prepared by DE. Experimental results prove that CE is a prospective manufacturing method for improving the mechanical properties, anti-corrosion and anti-wear of AZ61 magnesium alloy.


2021 ◽  
Vol 36 (2) ◽  
pp. 219-227
Author(s):  
P. Saiprasit ◽  
A. K. Schlarb

Abstract Poly(lactic acid) (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)-based nanocomposites filled with 1 vol.% silicon dioxide nanoparticles (nano-SiO2) were prepared using a co-rotating twin-screw extruder and injection molding. The nanocomposites with various blending sequences were investigated using PLA-based and PBAT-based nanocomposite masterbatches. Morphology of the PLA/PBAT/SiO2 nanocomposites was examined using a scanning electron microscope (SEM) and a focused ion beam (FIB) SEM. It is found that the nano-SiO2 locates in the original polymer phase, in which it is firstly incorporated in the masterbatch process, as well as at the interface between the two polymers. However, as the residence time in the extrusion process increases, the nanoparticles migrate from the original phase to the interface, governed by the thermodynamic driving force. The best optimization of mechanical properties is achieved by using the PBAT-based masterbatches with a one-step process or short residence time. The processing history, therefore, has a tremendous impact on the final properties of the resulting materials.


Author(s):  
Tribeni Roy ◽  
Anuj Sharma ◽  
Prabhat Ranjan ◽  
R. Balasubramaniam

Abstract Electrical discharge machined surfaces inherently possess recast layer on the surface with heat affected zone (HAZ) beneath it and these have a detrimental effect on the mechanical properties viz. hardness, elastic modulus, etc. It is very difficult to experimentally characterise each machined surface. Therefore, an attempt is made in this study to numerically calculate the mechanical properties of the parent material, HAZ and the recast layer on a hemispherical protruded micro feature fabricated by reverse micro EDM (RMEDM). In the 1st stage, nano indentation was performed to experimentally determine the load-displacement plots, elastic modulus and hardness of the parent material, HAZ and the recast layer. In the 2nd stage, FEA simulation was carried out to mimic the nano indentation process and determine the load-displacement plots for all the three cases viz. parent material, recast layer and HAZ. Results demonstrated that the load'displacement plots obtained from numerical model in each case was in good agreement with that of the experimental curves. Based on simulated load-displacement plots, hardness was also calculated for parent material, HAZ and the recast layer. A maximum of 11% error was observed between simulated values of hardness and experimentally determined values.


2003 ◽  
Vol 19 (2) ◽  
pp. 61-76 ◽  
Author(s):  
Tasnim Kallel ◽  
Valérie Massardier-Nageotte ◽  
Mohamed Jaziri ◽  
Jean-François Gérard ◽  
Boubaker Elleuch

PE/PS blends have been extensively studied with the objective of improving their recycling. The objective of the present study was to investigate the effect of potential pollutants on properties of high density polyethylene (HDPE)/polystyrene (PS) plastic blends. The pollutants selected were a polar molecule of low molar mass, i.e. ethylene glycol, and an oil for engine which can be considered as less polar higher molar mass molecules. Such study can be considered for the recycling of polymer wastes from automotive applications. The compatibilizer used for PE/PS blends was a non-grafted Styrene-Ethylene Butene-Styrene copolymer (SEBS). Rheological properties, morphology and mechanical properties were analyzed. Study of the morphologies and of the mechanical properties shows that a small polar molecule such as ethylene glycol can form a third phase whereas an oil can improve compatibilization (lower diameter of the dispersed phase, better adhesion). Morphologies are in good agreement with mechanical behavior. For PE/PS blends, the lower adhesion due to the presence of ethylene glycol induced a decrease of the viscosity and absorbed energy. On the opposite, the presence of oil decreases the diameter of the dispersed phase, which leads to a significant improvement of the impact properties.


2013 ◽  
Vol 470 ◽  
pp. 244-249
Author(s):  
Chang Dong Liu ◽  
Yi Du Zhang

Based on Simufact11.0, a 3-D model of T profile extrusion is established and the extrusion process of TC4 is investigated using finite volumemethod(FVM) of Euler mesh description. Effects of different friction coefficients on the effective stress, extrusion pressure, effective strain and effective strain rate have been studied. The study shows that there is a high-stress zone at a certain distance from the entrance of the forming area and a high strain rate zone around that area. With the increase of friction coefficient, the value of the stress increased and the deformation is more uneven. The track of extrusion pressure shows that extrusion increase with the increase of friction coefficient.


Sign in / Sign up

Export Citation Format

Share Document