Synthesis of Corrugated Structured N Type Pbs Thin Film

2012 ◽  
Vol 500 ◽  
pp. 118-122 ◽  
Author(s):  
E.I. Anila ◽  
K.J. Saji ◽  
U.S. Sajeev

PbS thin films with corrugated structure were synthesized on glass substrates by dip coating. The surface of the films was found to be corrugated. XRD analysis confirmed the formation of crystalline PbS nanoparticles with average grain size 14nm. From thermo power measurements, the conductivity of the samples was found to be of n type. Band gap of the films was estimated as 1.7eV from absorption spectra.

2011 ◽  
Vol 337 ◽  
pp. 612-615
Author(s):  
Quan Sheng Liu ◽  
Xi Yan Zhang ◽  
Xiao Chun Wang ◽  
Zhao Hui Bai ◽  
Neng Li Wang ◽  
...  

Mg0.33Zn0.67Ofilms were prepared on quartz glass substrates by Sol-Gel method. Structures and optical properties of Mg0.33Zn0.67Ofilms were studied. The results of XRD analysis indicates that the Mg0.33Zn0.67Ofilm is hexagonal wurtzite structure and the lattice constants a and c are 0.3265nm and 0.5218 nm respectively. Lattice constants a and c of the Mg0.33Zn0.67O film increased because of the addition of Mg. The image of SEM shows that the Mg0.33Zn0.67O film is homogeneous and its average grain size is about 40nm. The absorption spectrum of the sample reveals that the absorption edge of Mg0.33Zn0.67O film located at 312.3nm and the corresponding forbidden band width is 3.97eV. is by three peaks ,which located at 383.9nm,442.6nm and 532.9nm respectively,constitute the luminescence spectrum of the film. The excitation peak located at 379.9nm.


2005 ◽  
Vol 12 (05n06) ◽  
pp. 759-766 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). Thickness of the films varied between 20 nm and 60 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. 3D and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Grain sizes were calculated using the XRD results and Scherer's formula. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching a maximum value of 41.9 nm when the film size reaches 60 nm. We could not find any sequential variation in the grain size with the growth rate.


2018 ◽  
Vol 5 (2) ◽  
pp. 16-18
Author(s):  
Chandar Shekar B ◽  
Ranjit Kumar R ◽  
Dinesh K.P.B ◽  
Sulana Sundar C ◽  
Sunnitha S ◽  
...  

Thin films of poly vinyl alcohol (PVA) were prepared on pre-cleaned glass substrates by Dip Coating Method. FTIR spectrum was used to identify the functional groups present in the prepared films. The vibrational peaks observed at 1260 cm-1 and 851 cm-1 are assigned to C–C stretching and CH rocking of PVA.The characteristic band appearing at 1432 cm-1 is assigned to C–H bend of CH2 of PVA. The thickness of the prepared thin films were measured by using an electronic thickness measuring instrument (Tesatronic-TTD20) and cross checked by gravimetric method. XRD spectra indicated the amorphous nature of the films.Surface morphology of the coated films was studied by scanning electron microscope (SEM). The surface revealed no pits and pin holes on the surface. The observed surface morphology indicated that these films could be used as dielectric layer in organic thin film transistors and as drug delivery system for wound healing.


Coatings ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Weiguang Zhang ◽  
Jijun Li ◽  
Yongming Xing ◽  
Xiaomeng Nie ◽  
Fengchao Lang ◽  
...  

SiO2 thin films are widely used in micro-electro-mechanical systems, integrated circuits and optical thin film devices. Tremendous efforts have been devoted to studying the preparation technology and optical properties of SiO2 thin films, but little attention has been paid to their mechanical properties. Herein, the surface morphology of the 500-nm-thick, 1000-nm-thick and 2000-nm-thick SiO2 thin films on the Si substrates was observed by atomic force microscopy. The hardnesses of the three SiO2 thin films with different thicknesses were investigated by nanoindentation technique, and the dependence of the hardness of the SiO2 thin film with its thickness was analyzed. The results showed that the average grain size of SiO2 thin film increased with increasing film thickness. For the three SiO2 thin films with different thicknesses, the same relative penetration depth range of ~0.4–0.5 existed, above which the intrinsic hardness without substrate influence can be determined. The average intrinsic hardness of the SiO2 thin film decreased with the increasing film thickness and average grain size, which showed the similar trend with the Hall-Petch type relationship.


2006 ◽  
Vol 20 (02) ◽  
pp. 217-231 ◽  
Author(s):  
MUHAMMAD MAQBOOL ◽  
TAHIRZEB KHAN

Thin films of pure silver were deposited on glass substrate by thermal evaporation process at room temperature. Surface characterization of the films was performed using X-ray diffraction (XRD) and atomic force microscopy (AFM). Thickness of the films varied between 20 nm and 72.8 nm. XRD analysis provided a sharp peak at 38.75° from silver. These results indicated that the films deposited on glass substrates at room temperature are crystalline. Three-dimension and top view pictures of the films were obtained by AFM to study the grain size and its dependency on various factors. Average grain size increased with the thickness of the deposited films. A minimum grain size of 8 nm was obtained for 20 nm thick films, reaching 41.9 nm when the film size reaches 60 nm. Grain size was calculated from the information provided by the XRD spectrum and averaging method. We could not find any sequential variation in the grain size with the growth rate.


2013 ◽  
Vol 795 ◽  
pp. 228-232 ◽  
Author(s):  
Abdulwahab S.Z. Lahewil ◽  
Y. Al-Douri ◽  
U. Hashim ◽  
Naser Mahmoud Ahmed

Cadmium sulfide (CdS) nanostructures were prepared with different spin coating speed 1000 and 3000 rpm and molarities of Cd:S to be 1.2 to 0.01 mol/L using sol-gel spin coating technique. It is found that the average grain size of CdS nanostructures deposited on glass substrates at 1000 and 3000 rpm is 43 to 4 nm respectively. The effect of grain size on the semiconductor properties are in agreement with experimental and theoretical data.


Solar Energy ◽  
2005 ◽  
Author(s):  
Gye-Choon Park ◽  
Woon-Jo Jeong ◽  
Hyeon-Hun Yang ◽  
Hae-Duck Jung ◽  
Jin Lee ◽  
...  

CuInS2 thin films were fabricated by sulphurization of S/In/Cu Stacked elemental layers (SEL) on slide glass substrates by annealing in vacuum of 10−3 Torr at temperature of 50 °C ∼ 350 °C. Some S/In/Cu SEL were vacuum annealed under a sulfur atmosphere. The thin films thus annealed were analyzed by measuring structural, electrical and optical properties. When CuInS2 thin films were made under a sulfur atmosphere, lattice constant of a and grain size of the thin film were a little larger than those in only vacuum annealing. The largest lattice constant of a and grain size was 5.63 Å and 1.2 μm respectively. Also, when the thin films were made under a sulfur atmosphere, conduction types were all p-type with resistivities of around 10−1 Ωcm and optical energy band gaps of the films were a little larger than those in only vacuum and the largest optical energy band gap of CuInS2 thin film was 1.53 eV.


2016 ◽  
Vol 852 ◽  
pp. 1080-1086
Author(s):  
Xiao Xin Zhang ◽  
Jian Jun Xie ◽  
Ying Shi ◽  
Ling Cong Fan ◽  
De Bao Lin ◽  
...  

Lutetium oxyorthosilicate (Lu2SiO5, LSO) doped with Pr3+ was synthesized on cleaned silicon (111) substrates by sol-gel route with the spin-coating technique. XRD patterns indicated that the films were crystallized into A-type LSO phase at 1000 °C, followed by a phase transition to B-type LSO occurred at 1100 °C. SEM observations revealed that the surface of the films was smooth, homogeneous and crack-free. When the sintering temperature was 1000 °C, the average grain size of the crystal particles was 100-200 nm and the thickness of the thin film was about 380 nm when the coating layer number up to 10. While the sintering temperature was 1100 °C, the average grain size of the crystal particles was 200-300 nm and the thickness of the thin film was about 320 nm also 10 layers. PL spectra showed when under 1000 °C, the quenching concentration of Pr3+ was 0.3 mol%, the characteristic emission peaks was 289 nm and 340 nm and the dominant decay time was 4.64 ns; while under 1100 °C, the quenching concentration of Pr3+ was 0.4 mol%, the characteristic emission peaks was 280 nm and 320 nm and the dominant decay time was 2.61 ns.


2013 ◽  
Vol 665 ◽  
pp. 93-100 ◽  
Author(s):  
T.H. Patel

SnS (tin sulphide) is of interest for use as an absorber layer and the wider energy band gap phases e.g. SnS2, Sn2S3and Sn/S/O alloys of interest as Cd-free buffer layers for use in thin film solar cells. Thin films of tin sulphide have been deposited using CBD at three different bath temperatures (27, 35 and 45 °C) onto microscope glass substrates. The X ray diffraction (XRD) analysis of the deposited films reveled that all films has orthorhombic SnS phase as dominant one with preferred orientations along (111) direction. The temperature influence on the crystalline nature and the presence of other phases of SnS has been observed. The average grain size in the films determined from Scherers formula as well as from Williamson-Hall-plot method agrees well with each other. Energy dispersive X-ray (EDAX) analysis used to determine the film composition suggested that films are almost stoichiometric. The scanning electron microscopy (SEM) reveals that deposited films are pinhole free and consists of uniformly distributed spherical grains. The optical analysis in the 200-1200 nm range suggests that direct allowed transitions are dominant in the absorption process in the films with variation in the band gap (~1.79 to ~2.05 eV) due to variation in deposition temperature.


1997 ◽  
Vol 469 ◽  
Author(s):  
F. Edelman ◽  
T. Raz ◽  
Y. Komem ◽  
P. Werner ◽  
W. Beyer ◽  
...  

ABSTRACTHighly doped (∼1018 to 1021cm−3) polycrystalline Si1-xGex films, crystallized from amorphous (a) state at relative low temperatures, are prospective materials in a variety of applications, such as liquid-crystal displays, solar cells and integrated thermoelectric sensors on large-area glass substrates. Since the nature of the grains in the crystallized film defines properties such as carrier mobility, the nucleation and growth process of the a-SiGe films is of fundamental interest. We have studied the crystallization of undoped and highly doped (B or Ga) amorphous SiGe films. The films were deposited by RFCVD or molecular beam on oxidized (001)Si and for TEM study on cleaved NaCl. The incubation time and grain growth rate were studied by means of in situ TEM using a heating stage. The crystallization process in undoped SiGe followed Avrami relationship. An average grain size between 0.1 and 2μm was observed. However, the highly p-doped (with B or Ga) SiGe films crystallized to a stable nanocrystalline structure (grain size <10nm). The process of the a-SiGe crystallization is explained on the basis of self-diffusion. During the first stage, the nucleation of crystals is accompanied with nonequilibrium vacancy generation at the amorphous/crystalline interface. During the second stage, the growth of crystals takes place by vacancy outdiffusion which is hindered by B and Ga interaction with vacancies.


Sign in / Sign up

Export Citation Format

Share Document