Tribological Testing and Modeling of Elastomeric Materials

2014 ◽  
Vol 604 ◽  
pp. 87-90
Author(s):  
Antti Vaajoki ◽  
Anssi Laukkanen ◽  
Richard Waudby ◽  
Päivi Kivikytö-Reponen ◽  
Kati Valtonen ◽  
...  

In applications which experience repeated impacts by hard abrasive particles at high or moderate strain rates, elastomers are commonly used. The goal of the current work is to develop a methodology involving scratch testing and modeling which would be simple and cost effective for capturing the failure and wear behavior of elastomeric materials. The high failure strains as well as the extremely good wear resistance of elastomers make this task a formidable challenge. Modeling of a scratch test, however, seems to be promising in this regard.

2017 ◽  
Vol 13 (3) ◽  
pp. 32-36
Author(s):  
S. Rajesh ◽  
C. Velmurugan

Metal matrix composite (MMC) focuses primarily on improved specific strength, high temperature and wear resistance application. Aluminum matrix reinforced with titanium carbide and molybdenum disulfide has good potential and also self-lubrication. The main challenge is to produce this composite in a cost effective way to meet the above requirements. In this study Al–TiC-MoS2 castings with different volume fraction of TiC and MoS2 were produced in an argon atmosphere by an enhanced stir casting method. Hardness of the composite has increased with higher % of TiC addition. At that same time self-lubrication of composite has occur in the effort of MoS2. Dry sliding wear behavior of AMC was analyses with the help of a pin on disc wear and friction monitor. The present analyses reveal the improved hardness  as well as wear resistance.


2019 ◽  
Vol 36 (1−2) ◽  
Author(s):  
Oskari Haiko ◽  
Vuokko Heino ◽  
David A Porter ◽  
Juha Uusitalo ◽  
Jukka Kömi

Hardness has been considered the main factor controlling the abrasive wear of steels. However, microstructure also affects the wear behavior. Four steels with different microstructures were produced with a Gleeble 3800 thermomechanical simulator and tested for abrasive wear behavior. Different cooling rates and heat treatments were applied to obtain a surface hardness of approximately 450 HV. Mainly tempered martensite, pearlite and some bainite could be observed in the microstructures. Scratch testing with a CETR UMT-2 tribometer was conducted to produce wear tracks. The results revealed that each steel showed distinct wear behavior.


2009 ◽  
Vol 16 (03) ◽  
pp. 475-485 ◽  
Author(s):  
QUN WANG ◽  
ZHENHUA CHEN ◽  
ZHANG XIONG DING ◽  
DING CHEN

Microstructure of WC reinforced Ni -based self-fluxing alloy composite coating sprayed and fused by oxy-acetylene flame was investigated by scanning electron microscopy and energy dispersive X-ray Spectrometry, X-ray diffraction, and transmission electron microscopy. The wear performance of the coating was studied by a MLS-225 wet sand rubber wheel abrasive wear tester at various loads and sizes of abrasive particles. Also, the wear resistance of the coating was compared with uncoated ASTM1020 steel. The results indicated that the coating is bonded metallurgically to the substrate and has a homogeneous microstructure composed of both coarse WC and fine carbide and boride grains such as Cr 7 C 3, Cr 23 C 6, and Ni 2 B which disperse uniformly in the matrix of γ- Ni solid solution and Ni 3 B . The worn mass loss of the coating and ASTM1020 steel both increased with the load and size of abrasive particles, also, the coating has exhibited excellent abrasive wear resistance compared with ASTM1020 steel.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3863
Author(s):  
Dominik Kukla ◽  
Mateusz Kopec ◽  
Zbigniew L. Kowalewski ◽  
Denis J. Politis ◽  
Stanisław Jóźwiak ◽  
...  

In this paper, aluminide coatings of various thicknesses and microstructural uniformity obtained using chemical vapor deposition (CVD) were studied in detail. The optimized CVD process parameters of 1040 °C for 12 h in a protective hydrogen atmosphere enabled the production of high density and porosity-free aluminide coatings. These coatings were characterized by beneficial mechanical features including thermal stability, wear resistance and good adhesion strength to MAR 247 nickel superalloy substrate. The microstructure of the coating was characterized through scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis. Mechanical properties and wear resistance of aluminide coatings were examined using microhardness, scratch test and standardized wear tests, respectively. Intermetallic phases from the Ni-Al system at specific thicknesses (20–30 µm), and the chemical and phase composition were successfully evaluated at optimized CVD process parameters. The optimization of the CVD process was verified to offer high performance coating properties including improved heat, adhesion and abrasion resistance.


2019 ◽  
Vol 26 (02) ◽  
pp. 1850143
Author(s):  
SAEED NIYAZBAKHSH ◽  
KAMRAN AMINI ◽  
FARHAD GHARAVI

Anodic oxide coatings are applied on aluminum alloys in order to improve corrosion resistance and to increase hardness and wear resistance. In the current study, a hard anodic coating was applied on AA7075-T6 aluminum alloy. To survey the anodizing temperature (electrolyte temperature) effect, three temperatures, namely, [Formula: see text]C, 0∘C and 5∘C were chosen and the samples were sealed in boiling water and sodium dichromate to study the role of sealing. For measuring the oxide coatings porosity and hardness and also for comparing the samples’ wear resistance field-emission scanning electron microscopy (FESEM), microhardness test and pin-on-disk method were utilized, respectively. The results showed that by increasing the anodizing temperature, hardness and consequently wear resistance decreased so that hardness and weight loss in the samples with no sealing decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg at [Formula: see text]C to 405 and 358[Formula: see text]HV and 1.05 and 1.12[Formula: see text]mg at 0∘C and 5∘C, respectively, which is due to the porosity increment by increasing the anodizing temperature. Also, sealing in boiling water and dichromate contributed to soft phases and coating hydration, which resulted in a decrease in hardness and wear resistance. Hardness and weight loss in the coated samples at [Formula: see text]C decreased from 460[Formula: see text]HV and 0.61[Formula: see text]mg in the samples with no sealing to 435 and 417[Formula: see text]HV and 0.72 and 0.83[Formula: see text]mg in the samples sealed in boiling water and dichromate, respectively.


2014 ◽  
Vol 1040 ◽  
pp. 778-783 ◽  
Author(s):  
Daria Mul ◽  
Dina S. Krivezhenko ◽  
Daria B. Lazurenko ◽  
Olga G. Lenivtseva ◽  
Alexandra Chevakinskaya

The surface layer of steel was reinforced by electron-beam cladding at air atmosphere. Two types of powder mixtures were used to receive coatings: (1) titanium and graphite, (2) titanium and boron carbide. The formation of heterogeneous structure was observed in specimens after the electron-beam treatment by the methods of optical microscopy and scanning electron microscopy. The X-ray diffraction analysis was used to analyze the phase composition of the coatings. The wear resistance level of the coatings was estimated by friction test against loosely fixed abrasive particles. It was found that surface alloying of steel with carbon containing components led to the formation of material with an enhanced wear resistance level.


1983 ◽  
Vol 27 ◽  
Author(s):  
R. Martinella ◽  
G. Chevallard ◽  
C. Tosello

ABSTRACTMechanically polished Ti6Al4V samples were implanted with 100 key nitrogen ions to a fluence of 5.1017 ions/cm2 at two different bulk tenneratures: 370°C and 470°C. Wear tests were carried out with a reciprocating slidina tribotester. Structural modifications and wear morphologies were studied by TEM and SEM. 370°C implanted sample showed the same wear behavior as unimplanted ones, while 470°C implanted sample showed better wear resistance because of a TiN hardened layer. Correlations- between microstructural modifications, wear behavior and mechanisms are reported: results agree with the delamination theory. Comparison with ion- and gas-nitrided samples are presented.


2013 ◽  
Vol 20 (03n04) ◽  
pp. 1350033 ◽  
Author(s):  
ŞERAFETTIN EKINCI ◽  
AHMET AKDEMIR ◽  
HUMAR KAHRAMANLI

Nitriding is usually used to improve the surface properties of steel materials. In this way, the wear resistance of steels is improved. We conducted a series of studies in order to investigate the microstructural, mechanical and tribological properties of salt bath nitrided AISI 4140 steel. The present study has two parts. For the first phase, the tribological behavior of the AISI 4140 steel which was nitrided in sulfinuz salt bath (SBN) was compared to the behavior of the same steel which was untreated. After surface characterization using metallography, microhardness and sliding wear tests were performed on a block-on-cylinder machine in which carbonized AISI 52100 steel discs were used as the counter face. For the examined AISI 4140 steel samples with and without surface treatment, the evolution of both the friction coefficient and of the wear behavior were determined under various loads, at different sliding velocities and a total sliding distance of 1000 m. The test results showed that wear resistance increased with the nitriding process, friction coefficient decreased due to the sulfur in salt bath and friction coefficient depended systematically on surface hardness. For the second part of this study, four artificial neural network (ANN) models were designed to predict the weight loss and friction coefficient of the nitrided and unnitrided AISI 4140 steel. Load, velocity and sliding distance were used as input. Back-propagation algorithm was chosen for training the ANN. Statistical measurements of R2, MAE and RMSE were employed to evaluate the success of the systems. The results showed that all the systems produced successful results.


2012 ◽  
Vol 557-559 ◽  
pp. 534-537 ◽  
Author(s):  
Yong Ping Niu ◽  
Sa Li ◽  
Jun Kai Zhang ◽  
Li Hua Cai ◽  
Yong Zhen Zhang

Polytetrafluoroethylene (PTFE) nanocomposites filled with alumina nanoparticles were prepared by compression molding and follow-up sintering. The tribological behaviors of PTFE nanocomposites sliding against GCr15 steel were evaluated using ball-on-disk tribology test rig. The worn surfaces of the unfilled and filled PTFE nanocomposite were investigated using a scanning electron microscope (SEM). The wear behavior of the PTFE nanocomposites was explained in terms of the topography of worn surfaces. It was found that the addition of alumina nanoparticles was effective in enhancing the wear resistance of the PTFE nanocomposite.


Sign in / Sign up

Export Citation Format

Share Document