Multiparametric In Vitro Evaluation of Cytocompatibility of 1% Strontium-Containing Nanostructured Hydroxyapatite

2014 ◽  
Vol 631 ◽  
pp. 345-350
Author(s):  
Daiana Reis ◽  
Daniela Silva ◽  
Juliana Côrtes ◽  
Letícia Hummel ◽  
Elena Mavropoulos ◽  
...  

Hydroxiapatite (HA), one of the most widely employed bioceramic bone substitutes, when applied on its nanostructured form (nHA) may contribute to achieve a crystalline structure which is closer to the size and morphology of biological apatite. Furthermore, HA might also be doped with several different cations with biological effects including Sr2+. Therefore, a biomaterial based on nanostructured HA containing 1% Strontium (nSrHA) could present interesting biological properties, as strontium is described as a modulator of both osteoblast and osteoclast activities, presenting an important regulatory role on bone resorption. However, such modifications may also affect the biocompatibility of this material, which should be accessed initially by in vitro methods. Therefore, the present work aimed to evaluate the in vitro biocompatibility of 1% nSrHA discs with human primary osteoblasts through a multiparametric assay which assesses simultaneously metabolic activity (XTT assay), membrane integrity (NR test) and cell density (CVDE). Extracts of nSrHA, latex fragments (positive control), polystyrene beads (negative control) and nHA (for comparison) were prepared and exposed to 104 cells for 24h at 37°C/5% CO2on test plates, according to ISO 10993-5:2009, on quintuplicates. Cells exposed to unconditioned media were used as experimental control. After exposure, cells were tested for viability with a commercial multiparametric kit (In Cytotox, Xenometrix, Germany). The positive and negative controls presented the expected results, validating the assay. Both nHA and SrnHA were considered biocompatible, since the presented a cell viability after exposure statistically similar to the experimental control. In conclusion, the synthesized nSrHA discs are cytocompatible and, consequently, adequate for further in vitro tests on cell adhesion, proliferation and differentiation.

2020 ◽  
Vol 1 (2) ◽  
pp. 8-15
Author(s):  
Gislanne Stéphanne Estevam da Silva ◽  
Rivaldo Leon Bezerra Cabral ◽  
Nathalie de Sena Pereira ◽  
José Heriberto Oliveira do Nascimento ◽  
Dany G kramer

Silver nanoparticles (AgNP) can be incorporated into medical devices, such as tissues, to circumvent bacterial resistance such as Klebsiella spp, which can lead to skin and mucosal infections. Thus, the aim of the present study was to synthesize silver nanoparticles for later incorporation into cotton fabrics and in vitro tests against Klebsiella spp. The AgNP colloidal solution was synthesized (AgNO3 - 0.1 mM, 100 mM trisodium citrate, polyvinylpyrrolidone - 0.24 g, H2OH2) and then impregnated into the cotton fabric pretreated with poly diallyl dimethylammonium chloride (PDDA) of 100/500 tissue, shaken for 30 minutes). The material produced was analyzed by the FTIR; DLS and reflectance spectroscopy. The tests of the antimicrobial activities were by the microdilution technique against Klebsiella spp, in tubes containing Brain Heart Infusion (BHI), with the solution of silver (1); Tissue containing AgNP - 4 mm (2); Negative control (3) and positive control - ceftriaxone (4). Regarding MIC, the inhibitory activity occurred of the dilutions between 1/2 and 1/16. The AgNP particles had an average size of 24.75 nm. As synthesized AgNPs demonstrate the excellent antimicrobial activity against Klebsiella spp, with special emphasis on applications in nanotechnology and nanomedicine, targeting multiresistant antibiotic bacteria.


2013 ◽  
Vol 39 (2) ◽  
pp. 122-125 ◽  
Author(s):  
Guilherme Silva de Podestá ◽  
Leandro Grassi de Freitas ◽  
Rosangela Dallemole-Giaretta ◽  
Ronaldo João Falcão Zooca ◽  
Larissa de Brito Caixeta ◽  
...  

Organic matter plays a fundamental role in the antagonistic activity of microorganisms against phytonematode populations on the soil. In this study, the compatibility between the fungus Pochonia chlamydosporia (Pc-12) and the rhizobacterium Gracilibacillus dipsosauri (MIC 14) was evaluated in vitro, as well as the effect of the fungus at the concentration of 5,000 chlamydospores per gram of soil, rhizobacterium at 4.65 x 10(9) cells/g of soil, and the soil conditioner Ribumin® at 10 g/pot, either alone or in combination, against Meloidogyne javanica population in tomato plants (3,000 eggs/pot). A suspension of water or Ribumin® alone was applied on the soil as negative control, while a suspension of nematode eggs was applied as positive control. The reduction in the number of galls in roots per plant was 48 and 41% for the treatments Ribumin + MIC 14 + Pc-12 and MIC 14 + Pc-12, respectively. Regarding to the number of eggs per plant, MIC 14 and Pc-12 + Ribumin led to a reduction by 26 and 21%, respectively, compared to the control treatment. Interaction between the nematophagous fungus and the rhizobacterium was positive for the nematode control, even though G. dipsosauri inhibited P. chlamydosporia growth by up to 30% in in vitro tests.


2021 ◽  
Vol 10 (4) ◽  
pp. e56810414587
Author(s):  
Sandro J. de Oliveira Tavares ◽  
Isleine Portal Caldas ◽  
Fabiano Palmeira Gonçalves ◽  
Pantaleo Scelza ◽  
Felipe Oliveira ◽  
...  

In cases of injuries in the oral cavity, the mouthwash comes in contact with the underlying gingival connective tissue and should have its cytotoxicity assessed. However, there is no available evidence if cells of elderly donors react differently during in vitro assessments of mouthwashes. This study aimed to compare the cytotoxicity evaluation of two different mouthwash types when assessed with primary gingival fibroblasts from either young and older donors.  Primary cells were collected from two elderly patients (mean age 66.5 years old) and two young patients (mean age 27.5 years old). The primary cell culture was produced from gingival fragments and exposed for 24h in Perioxidin® and Oral B®. A control group was exposed to unconditioned culture media, representing 100% of cell survival (negative control), and 200mg/mL solution of latex fragments was used as a positive control due to its well-known toxicity. Both products presented similar dose-dependent cytotoxicity. In the toxic range, from 0.035% to 0.00035% for Perioxidin® and 0.06 to 0.0006% for Oral B®. The calculated IC50 values were very similar, with the exception of Oral B® tested with young cells, which presented a slightly higher toxic concentration (0.0523 mM). The statistical analysis shows no significant difference between tests with cells from young our elderly donors (p >0.05). These mouthwashes should should be used sparingly to prevent the spread of SARS-CoV-2. However, the use of age-matched cells during in vitro tests may not be necessary to predict differences in the biological response of the elderly to these products.


2017 ◽  
Vol 9 (2) ◽  
pp. 71
Author(s):  
Nurhasanah Nurhasanah ◽  
Fauzia Andrini ◽  
Yulis Hamidy

Shallot (Allium ascalonicum L.) has been known as traditional medicine. Shallot which has same genus with garlic(Allium sativum L.) contains allicin that is also found in garlic and has been suspected has fungicidal activity toCandida albicans. It is supported by several researches. Therefore, shallot is suspected has antifungal activity too.The aim of this research was to know antifungal activity of shallot’s water extortion againsts Candida albicans invitro. This was a laboratory experimental research which used completely randomized design, with diffusion method.Shallot’s water extortion was devided into three concentrations, there were 50%, 100% and 200%. Ketoconazole 2%was positive control and aquadest was negative control. The result of this research based on analysis of varians(Anova), there was significant difference between several treatments and was confirmed with Duncan New MultipleRange Test (DNMRT) p<0,05, there was significant difference between 100% shallot’s water extortion with othertreatments, but there was no significant difference between 50% shallot’s water extortion with 200% shallot’s. Theconclusion was shallot’s water extortion had antifungal activity againsts Candida albicans with the best concentration100%, but it was lower than ketoconazole 2%.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2282
Author(s):  
Valentina Masola ◽  
Mario Bonomini ◽  
Maurizio Onisto ◽  
Pietro Manuel Ferraro ◽  
Arduino Arduini ◽  
...  

Glucose-based solutions remain the most used osmotic agents in peritoneal dialysis (PD), but unavoidably they contribute to the loss of peritoneal filtration capacity. Here, we evaluated at a molecular level the effects of XyloCore, a new PD solution with a low glucose content, in mesothelial and endothelial cells. Cell viability, integrity of mesothelial and endothelial cell membrane, activation of mesothelial and endothelial to mesenchymal transition programs, inflammation, and angiogenesis were evaluated by several techniques. Results showed that XyloCore preserves mesothelial and endothelial cell viability and membrane integrity. Moreover XyloCore, unlike glucose-based solutions, does not exert pro-fibrotic, -inflammatory, and -angiogenic effects. Overall, the in vitro evidence suggests that XyloCore could represent a potential biocompatible solution promising better outcomes in clinical practice.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3693
Author(s):  
Yurii P. Sharkeev ◽  
Ekaterina G. Komarova ◽  
Valentina V. Chebodaeva ◽  
Mariya B. Sedelnikova ◽  
Aleksandr M. Zakharenko ◽  
...  

A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous–crystalline structure that exhibits excellent biocopatibility. The structure and physico–chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from −456 to −535 mV, while the zeta potential (ZP) decreased from −53 to −40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200–250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous–crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous–crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mazni Abu Zarin ◽  
Joo Shun Tan ◽  
Paramasivam Murugan ◽  
Rosma Ahmad

Abstract Background The banana or scientifically referred to as Musa sp., is one of the most popular fruits all over the world. Almost all parts of a banana tree, including the fruits, stem juice, and flowers are commonly used as traditional medicine for treating diarrhoea (unripe), menorrhagia, diabetes, dysentery, and antiulcerogenic, hypoglycemic, antilithic, hypolipidemic conditions, plus antioxidant actions, inflammation, pains and even snakebites. The study carried out was to evaluate in vitro anti-urolithiatic activity from different types of Musa pseudo-stems. Methods Observing anti-urolithiathic activity via in vitro nucleation and aggregation assay using a spectrophotometer followed by microscopic observation. A total of 12 methanolic extracts were tested to determine the potential extracts in anti-urolithiasis activities. Cystone was used as a positive control. Results The results manifested an inhibition of nucleation activity (0.11 ± 2.32% to 55.39 ± 1.01%) and an aggregation activity (4.34 ± 0.68% to 58.78 ± 1.81%) at 360 min of incubation time. The highest inhibition percentage in nucleation assay was obtained by the Musa acuminate x balbiciana Colla cv “Awak Legor” methanolic pseudo-stem extract (2D) which was 55.39 ± 1.01%at 60 min of incubation time compared to the cystone at 30.87 ± 0.74%. On the other hand,the Musa acuminate x balbiciana Colla cv “Awak Legor” methanolic bagasse extract (3D) had the highest inhibition percentage in the aggregation assay incubated at 360 min which was obtained at 58.78 ± 1.8%; 5.53% higher than the cystone (53.25%).The microscopic image showed a great reduction in the calcium oxalate (CaOx) crystals formation and the size of crystals in 2D and 3D extracts, respectively, as compared to negative control. Conclusions The results obtained from this study suggest that the extracts are potential sources of alternative medicine for kidney stones disease.


2013 ◽  
Vol 18 (1) ◽  
pp. 86-93
Author(s):  
Gustavo Antônio Martins Brandão ◽  
Rafael Menezes Simas ◽  
Leandro Moreira de Almeida ◽  
Juliana Melo da Silva ◽  
Marcelo de Castro Meneghim ◽  
...  

OBJECTIVE: To evaluate the in vitro ionic degradation and slot base corrosion of metallic brackets subjected to brushing with dentifrices, through analysis of chemical composition by Energy Dispersive Spectroscopy (EDS) and qualitative analysis by Scanning Electron Microscopy (SEM). METHODS: Thirty eight brackets were selected and randomly divided into four experimental groups (n = 7). Two groups (n = 5) worked as positive and negative controls. Simulated orthodontic braces were assembled using 0.019 x 0.025-in stainless steel wires and elastomeric rings. The groups were divided according to surface treatment: G1 (Máxima Proteção Anticáries®); G2 (Total 12®); G3 (Sensitive®); G4 (Branqueador®); Positive control (artificial saliva) and Negative control (no treatment). Twenty eight brushing cycles were performed and evaluations were made before (T0) and after (T1) experiment. RESULTS: The Wilcoxon test showed no difference in ionic concentrations of titanium (Ti), chromium (Cr), iron (Fe) and nickel (Ni) between groups. G2 presented significant reduction (p < 0.05) in the concentration of aluminium ion (Al). Groups G3 and G4 presented significant increase (p < 0.05) in the concentration of aluminium ion. The SEM analysis showed increased characteristics indicative of corrosion on groups G2, G3 and G4. CONCLUSION: The EDS analysis revealed that control groups and G1 did not suffer alterations on the chemical composition. G2 presented degradation in the amount of Al ion. G3 and G4 suffered increase in the concentration of Al. The immersion in artificial saliva and the dentifrice Máxima Proteção Anticáries® did not alter the surface polishing. The dentifrices Total 12®, Sensitive® and Branqueador® altered the surface polishing.


Author(s):  
Liliana Aguilar Marcelino ◽  
Jesús Antonio Pineda Alegría ◽  
David Osvaldo Salinas-Sánchez ◽  
Víctor Manuel Hernández Velázquez ◽  
Gonzalo Iván Silva Aguayo ◽  
...  

The sugarcane aphid, Melanaphis sacchari Zehntner (Hemiptera: Aphididae), is the main pest of sorghum, Sorghum bicolor L. Moench (Poaceae), in Mexico. To control this insect, farmers currently use synthetic chemical insecticides, which are toxic to humans and biodiversity. However, natural products are a promising potential source of safer alternative means to control different agricultural pests. The main objective of this study was to evaluate the insecticidal effect of contact by fumigation of pure molecules of four commercial fatty acids (palmitic, stearic, pentadecanoic and linoleic acids), the phytosterol ß -sitosterol, and the flavonoid rutin. The results showed that fatty acids were the most effective against M. sacchari ; the highest mortality rate (85%) was produced by linoleic acid and the LC 50 was 1,181 ppm, followed by stearic and palmitic acids with mortality percentages of 74 and 63%, respectively, at a concentration of 2,500 ppm at 72 h. The positive control, imidacloprid, had 100% mortality in 24 h and the tween 20 negative control exhibited 4% mortality in 72 h. Our results show that commercial fatty acids are effective against adults of M. sacchari , and can be considered an environmentally friendly alternative to the frequent use of synthetic chemical insecticides.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Pollyanna Francielli de Oliveira ◽  
Suzana Amorim Mendes ◽  
Nathália Oliveira Acésio ◽  
Luis Claudio Kellner Filho ◽  
Leticia Pereira Pimenta ◽  
...  

The medicinal plant Vochysia divergens is a colonizing tree species of the Pantanal, a unique and little explored wetland region in Brazil. This species is used in folk medicine as syrups and teas to treat respiratory infections, digestive disorders, asthma, scarring, and skin diseases. The objectives of this study were to evaluate the antioxidant, cytotoxic, and genotoxic potential of the ethanolic extract of Vochysia divergens leaves (VdE), as well as the influence of VdE and its major component (the flavone 3′,5-dimethoxy luteolin-7-O-β-glucopyranoside; 3′5 DL) on MMS-induced genotoxicity. The extract significantly reduced the viability of V79 cells in the colorimetric XTT assay at concentrations ≥ 39 μg/mL. A significant increase in micronucleus frequencies was observed in V79 cell cultures treated with VdE concentrations of 160 and 320 μg/mL. However, animals treated with the tested doses of VdE (500, 1000, and 2000 mg/kg b.w.) exhibited frequencies that did not differ significantly from those of the negative control group, indicating the absence of genotoxicity. The results also showed that VdE was effective in reducing MMS-induced genotoxicity at concentrations of 20, 40, and 80 μg/mL in the in vitro test system and at a dose of 15 mg/kg b.w. in the in vivo test system. Its major component 3′5 DL exerted no protective effect, suggesting that it is not responsible for the effect of the extract. The results of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that VdE was able to scavenge 92.6% of free radicals. In conclusion, the results suggest that the protective effect of VdE may be related, at least in part, to the antioxidant activity of its chemical constituents.


Sign in / Sign up

Export Citation Format

Share Document