Effect of Treatment of Fly Ash on Mechanical Properties of Polypropylene

2018 ◽  
Vol 759 ◽  
pp. 20-23
Author(s):  
Purnima Doddipatla ◽  
Sourav Agrawal

Recently lot of research is going on for different type of properties of composites and polymers.Fly ash is one source which is available abundantly and is considered an industrial waste. Fly ash can be used in huge amount in polymers.However there will be some problems with adhesion of the polymer matrix and fly ash. The matrix polymer chosen is Polypropylene and the flyash was treated with different material and composites were made . An effect of content of fly ash and study of effect of treatment on mechanical properties of the PP/fly ash composites was done. XRF studies were carried out to study the composition of fly ash.

2012 ◽  
Vol 488-489 ◽  
pp. 775-781 ◽  
Author(s):  
P. Shanmughasundaram ◽  
R. Subramanian ◽  
G. Prabhu

In the stir casting process, homogeneous dispersion of reinforcing particles within the matrix material is one such major problem, which influences on the properties of composites. In this research, an attempt has been made to study the influence of fly ash wt.% (10 ,15 and 20), ratio of the impeller outer dia to crucible inner dia (0.7,0.5 and 0.3) and processing method (liquid state stirring, two step stirring and modified two step stirring) on the mechanical properties and the distribution of fly ash particles in the Al matrix.Optimum parameters were identified for attaining the maximum mechanical properties such as hardness and tensile strength of composites by the application of Taguchi method, Analysis of Variance (ANOVA) and the results were validated by confirmation test.The present work could provide a guide for the industrial preparation of composites.


2018 ◽  
Vol 7 (3.35) ◽  
pp. 43
Author(s):  
Pothunuri Shalini kumari ◽  
K. Srinivas Rao ◽  
Tirumala Deepika

Being humans the usage of concrete is more and more important now a days. Generally many people have dreams to construct their own houses and also government is take up many big projects like construction of dams, bridges etc. This shows us the necessity of production of huge amount of concrete. But for the production of concrete tremendous amount of cement is required, which in turn leads to the release of large amounts of CO2 into the atmosphere during its manufacturing process. It causes adverse effects to the environment. To decrease amount of CO2 and its adverse effects, we partially replaced the cement with mineral admixtures like GGBS and Fly ash. The present study dealt with the mechanical properties of concrete by using various percentages of mineral admixtures with water to binder content ratio 0.4 and M40 grade of concrete.  


2013 ◽  
Vol 212 ◽  
pp. 59-62 ◽  
Author(s):  
Jerzy Myalski ◽  
Jakub Wieczorek ◽  
Adam Płachta

The change of matrix and usage of the aluminum alloys designed for the metal forming in making the composite suspension allows to extend the processing possibility of this type of materials. The possibility of the metal forming of the composites obtained by mechanical mixing will extend the range of composite materials usage. Applying of the metal forming e.g. matrix forging, embossing, pressing or rolling, will allow to remove the incoherence of the structure created while casting and removing casting failures. In order to avoid the appearance of the casting failures the homogenization conditions need to be changed. Inserting the particles into the matrix influences on the shortening of the composite solidification. The type of the applied particles influenced the sedimentation process and reinforcement agglomeration in the structure of the composite. Opposite to the composites reinforced with one-phase particles applying the fasess mixture (glassy carbon and silicon carbide) triggered significant limitation in the segregation process while casting solidification. Inserting the particles into the AW-AlCu2SiMn matrix lowers the mechanical properties tension and impact value strength. The most beneficial mechanical properties were gained in case of heterofasess composites reinforced with the particle mixture of SiC and glass carbon. The chemical composition of the matrix material (AW-AlCu2SiMn) allows to increase additionally mechanical characteristics by the precipitation hardening reached through heat casting forming.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2021 ◽  
Vol 43 (4) ◽  
pp. 268-279
Author(s):  
L.V. KARABANOVA ◽  
◽  
L.A. HONCHAROVA ◽  
N.V. BABKINA ◽  
◽  
...  

A series of the nanocomposites based on a multicomponent polymer matrix consisting of polyurethane and poly(hydroxypropyl methacrylate) and 1,2-propanediolysobutyl polyhedral oligomeric silsesquioxane (1,2-propanediolysobutyl-POSS), used as a functionalized nanofiller, was synthesized. The polymer matrix was formed on the principle of interpenetrating polymer networks (IPNs). The influence of 1,2-propanediolysobutyl-POSS amount on the thermodynamics of polymer components of the matrix interactions and on the dynamic mechanical properties of the created nanocomposites was studied. With purpose of the thermodynamic parameters interactions calculations the isothermal sorption of methylene chloride vapour by samples was investigated. The methylene chloride vapour sorption by the samples was studied using a vacuum installation and a McBain balance. By calculations of the thermodynamic parameters of PU and PHPMA interactions was shown that the free energy of PU and PHPMA mixing was positive. The introduction of 1-3 wt % of POSS lead to further phase separation in semi-IPNs. This is due to concentration of POSS particles in the PU’s nanodomains. The increasing of POSS content up to 5-10 wt % lead to compatibi-lization in semi-IPNs. These is due to concentration of POSS nanoparticles not only in the PU’s nanodomains but also in the interphase region of semi-IPN. The dynamic mechanical properties of the created nanocomposites were investigated and the degree of polymer components segregation was calculated. It was shown that there are two peaks of tan δ (PU and PHPMA) in the nanocom-posites. The introduction of 1-3 wt % of POSS lead to increasing of tan δ peak of PHPMA and to deepening of the bridge between two peaks (PU and PHPMA). At the same time the degree of polymer components of the matrix segregation became higher. This means the further phase separation in semi-IPNs. Increasing of 1,2-propanediolysobutyl-POSS amount up to 5-10% leads to the concentration of the nanofiller not only in the nanodomains of PU, but also in the interfacial layers. This leads to a change in the free energy of polymer components mixing, which becomes negative. At the same time the degree of polymer components of the matrix segregation became significantly reduced. These means that the process of compatibilization took part in the semi-IPNs.


2016 ◽  
Vol 56 (10) ◽  
pp. 1096-1108 ◽  
Author(s):  
Imrana I. Kabir ◽  
Charles C. Sorrell ◽  
Mykanth R. Mada ◽  
Sagar T. Cholake ◽  
Sri Bandyopadhyay

2021 ◽  
Vol 13 (2) ◽  
pp. 873
Author(s):  
Numanuddin M. Azad ◽  
S.M. Samindi M.K. Samarakoon

There has been a significant movement in the past decades to develop alternative sustainable building material such as geopolymer cement/concrete to control CO2 emission. Industrial waste contains pozzolanic minerals that fulfil requirements to develop the sustainable material such as alumino-silicate based geopolymer. For example, industrial waste such as red mud, fly ash, GBFS/GGBS (granulated blast furnace slag/ground granulated blast furnace slag), rice husk ash (RHA), and bagasse ash consist of minerals that contribute to the manufacturing of geopolymer cement/concrete. A literature review was carried out to study the different industrial waste/by-products and their chemical composition, which is vital for producing geopolymer cement, and to discuss the mechanical properties of geopolymer cement/concrete manufactured using different industrial waste/by-products. The durability, financial benefits and sustainability aspects of geopolymer cement/concrete have been highlighted. As per the experimental results from the literature, the cited industrial waste has been successfully utilized for the synthesis of dry or wet geopolymers. The review revealed that that the use of fly ash, GBFS/GGBS and RHA in geopolymer concrete resulted high compressive strength (i.e., 50 MPa–70 MPa). For high strength (>70 MPa) achievement, most of the slag and ash-based geopolymer cement/concrete in synergy with nano processed waste have shown good mechanical properties and environmental resistant. The alkali-activated geopolymer slag, red mud and fly ash based geopolymer binders give a better durability performance compared with other industrial waste. Based on the sustainability indicators, most of the geopolymers developed using the industrial waste have a positive impact on the environment, society and economy.


2021 ◽  
Vol 410 ◽  
pp. 668-673
Author(s):  
Vyacheslav V. Barakhtenko ◽  
Tatiana H. Sahabutdinova ◽  
Yury V. Novikov

The article is devoted to research in the development of composite materials based on polyvinyl chloride and industrial waste from the metallurgical, energy and mining industries. The properties of dispersed waste have been studied, which make it possible to speak of the possibility of their use as fillers for polymer compositions. A comparative analysis of the tested physical and mechanical properties is carried out, depending on the characteristics of the particle size of the fillers. It was revealed that from the point of view of construction materials, all the wastes under study can be used as fillers. The development will make it possible to dispose of industrial waste to obtain useful products and save natural non-metallic materials used in the creation of composites.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Jeesoo Sim ◽  
Youngjeong Kang ◽  
Byung Joo Kim ◽  
Yong Ho Park ◽  
Young Cheol Lee

In this research, a fly ash/epoxy composite was fabricated using fly ash filler classified as industrial waste. The behavior of its mechanical properties was investigated by changing the volume of fly ash to 10, 30 and 50 vol.%. To determine the influence of particle size on the mechanical properties, we used two different sizes of the fly ash, which were separated by sieving to less than 90 μm and 53 μm. To optimize fabrication conditions, the viscosity of the fly ash/epoxy slurry was measured at various temperatures with different fly ash volume fractions. In terms of mechanical properties, tensile strength increased as the amount of fly ash increased, up to a critical point. On the other hand, the compression strength of the composite increased continuously as the amount of fly ash increased. Finally, the fracture surfaces were characterized and correlated with the mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document