New Results of the Heat-Treated CuZn39Pb3 Brass Behavior and Resistance to Cavitation Erosion

2021 ◽  
Vol 890 ◽  
pp. 173-180
Author(s):  
Ilare Bordeaşu ◽  
Nicușor Alin Sîrbu ◽  
Iosif Lazăr ◽  
Ion Mitelea ◽  
Cristian Ghera ◽  
...  

The paper presents the results of the behavior and resistance to the erosion by vibrating cavitation of the CuZn39Pb3 brass, obtained by quenching the volume heat treatment from 800°C with water cooling, followed by the stress-relief to 250°C, with air cooling. Comparison with both the delivery status and the naval brass (used for ship propellers), based on the characteristic parameters values, recommended by the ASTM G32 standards and used in the Cavitation Laboratory of the Polytechnic University of Timisoara, shows that the hardness increase resulted from the heat treatment led to a significant increase of resistance to vibrating cavitation.

2016 ◽  
Vol 725 ◽  
pp. 647-652 ◽  
Author(s):  
Yusuke Yanagisawa ◽  
Yasuhiro Kishi ◽  
Katsuhiko Sasaki

The residual stress distributions of the forgings after both water-cooling and air-cooling were measured experimentally. The residual stress occurring during the heat-treatment was also simulated considering the phase transformation and the transformation plasticity. A comparison of the experiments with the simulations showed a good agreement. These results shows that the transformation plastic strain plays an important role in the heat treatment of large forged shafts.


2012 ◽  
Vol 192-193 ◽  
pp. 533-538 ◽  
Author(s):  
Levy Chauke ◽  
Heinrich Möller ◽  
Ulyate Andries Curle ◽  
Gonasagren Govender

Heat treatment of rheo-high pressure die cast (R-HPDC) A356 brake callipers has produced good mechanical properties on the laboratory scale. An industrial heat treatment is required to evaluate the applicability and conformance of the R-HPDC A356 brake callipers to the automotive industry. This research studied A356 brake callipers heat treated on the industrial scale with particular emphasis on the resulting microstructure, hardness and tensile properties. The eutectic Si-particle spheroidisation after solution heat treatment was achieved and observed with optical microscopy. A hardness increase from 64 to 100 Vickers was achieved from the as-cast condition to the industrially heat treated T6 condition. The heat treatment caused no significant variation in hardness and tensile properties from brake callipers within the same batch or from different batches. The yield and ultimate strengths of the industrial heat treated brake callipers were lower compared to the laboratory scale heat treatment properties, while the ductility increased, mainly due to quenching effects. Even though the industrial heat treated A356 brake callipers resulted in yield and ultimate tensile strengths lower than those achieved on a laboratory scale, they still exceeded the minimum specifications for gravity die cast A356 brake callipers.


2013 ◽  
Vol 747-748 ◽  
pp. 111-114
Author(s):  
Lin Song ◽  
Xiang Jun Xu ◽  
Jun Pin Lin ◽  
Lai Qi Zhang

Effects of annealing treatment on microstructure and the compressive properties of hot-worked Ti-45Al-8Nb-(W, B, Y) alloy were investigated. Microstructure of the extrusion plus multi-step forging pancake before and after heat treatment was analyzed by SEM and TEM, respectively. The annealing was conducted by holding samples at 1100°C for 2hrs, and followed by air cooling and furnace cooling. The mechanical properties were measured by Instron test machine. The microstructure evolution during compressive deformation was analyzed by TEM. The results showed that after the annealing the microstructure change could not be observed under SEM but can be observed under TEM. Many dislocation clusters were removed by heat treatment. The heat treated samples had similar compression behaviors with the pancake. TEM investigation showed that the numerous twin intersections occured in γ matrix during compression. The twin spaces tended to decrease as the deformation and the intersection increasing.


2009 ◽  
Vol 614 ◽  
pp. 55-59
Author(s):  
Fan Tao Kong ◽  
Yu Yong Chen

Effects of heat treatment on the microstructure of as-cast and as-forged Ti-45Al-5Nb-0.3Y alloy are discussed. The as-cast Ti-45Al-5Nb-0.3Y alloy exhibits a microstructure consisting of fine equiaxed grains which average size is almost 100μm. Phase transformation of as-cast Ti-45Al-5Nb-0.3Y alloy greatly depends upon cooling rate. During furnace cooling, the alloy transform to fully lamellar microstructure. During air cooling, massive transformation predominates. During oil cooling, extremely fine fully lamellar microstructure is formed. During water cooling, ordering α2 phases are primary. Thermo-mechanical treatments, through combined action of hot canned forging and heat treatment, were performed on a Ti-45Al-5Nb-0.3Y alloy to investigate their effect on the microstructure of the alloy. The as-forged Ti-45Al-5Nb-0.3Y alloy is comprised of a large number of dynamic recrystallization (DRX) γ grains, curved and broken lamellae, and a small amount of remnant lamellae. And three different microstructures, duplex (DP), nearly lamellar (NL) and fine fully lamellar (FFL), have been obtained through heat treatment at different temperatures (1320-1370°C), respectively.


2007 ◽  
Vol 26-28 ◽  
pp. 189-192
Author(s):  
Tae Kwon Ha ◽  
Jae Young Jung

Ti-45.5Al-2Cr-4Nb-0.4B alloy was cast by vacuum arc melting at high purity Ar atmosphere using high purity sponge Ti, granular Al (99.99%), flake Nb (99.9%), lump Cr (99.9%) and TiB2 (99.5%) and subsequently heat-treated to obtain a couple of microstructures, i.e. lamellar and near γ. The heat treatment consisted of annealing at a high temperature (1200 ~ 1330oC) of different phase fields for 24 hrs and stabilizing at 900oC for 4 hrs followed by air cooling. Fracture toughness was measured on the specimens with different microstructures at room temperature. The value of KQ of specimen with fully lamella structure was obtained as 18.68 MPa √m, much higher than that of specimen with near γ structure (11.84 MPa √m). It was also revealed that the KQ value was decreased as the annealing temperature decreased.


2005 ◽  
Vol 475-479 ◽  
pp. 81-84
Author(s):  
Sung Kang Hur ◽  
Kee Sam Shin ◽  
Jung Hoon Yoo ◽  
Ja Min Koo ◽  
Soo Lee ◽  
...  

The evolution of microstructure and its effects on the mechanical properties of modified 9%Cr-1%Mo steel during heat-treating at 1050°C for 15 min and then isothermal heat treatment at 380~760°C with subsequent air-cooling have been investigated. For the microstructural and mechanical property analyses, OM, SEM, EDS, XRD, hardness and impact tests were used. In accordance with the severity of the heat-treatment, the microstructure evolved from the untransformed martensite to the partially transformed dual phases of martensite and ferrite, and then fully transformed to ferrite. Impact values at ambient temperature for specimens isothermally heat-treated at 320 - 380°C, predominantly at about 350°C were lower than others’ with similar martensitic structure. The partially transformed specimens with dual phases of martensite and ferrite also showed lower impact values than samples with untransformed with martensitic, and transformed with ferritic structures.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 690 ◽  
Author(s):  
Du ◽  
Zhang ◽  
Zhang

WC–12Co coatings were deposited on 16Cr5Ni stainless steel substrate by high-velocity oxygen fuel (HVOF) process, followed by a one-hour heat-treatment in a tube furnace with a nitrogen atmosphere at 650, 800, 950, and 1100 °C, respectively. The influence of heat-treatment temperature on properties and cavitation erosion resistance of as-sprayed and heat-treated WC–12Co coatings was studied. The cavitation erosion test was carried out with ultrasonic cavitation erosion equipment. The porosity, microhardness, phase composition, as well as surface and cross-section morphology of the coatings were characterized. The coating heat-treated at 800 °C showed three typical cavitation erosion stages and exhibited the best cavitation erosion resistance. The cavitation erosion resistance was closely related to the coating microstructure and heat-treatment process. 3D optical microscopy was used to analyze the eroded surface of the coatings. The cavitation erosion mechanism of the coatings was discussed.


Author(s):  
Yiyu Wang ◽  
Wei Zhang ◽  
Zhili Feng

Abstract In this work, Grade 91 base metal was normalized with two different cooling conditions, water quenching and air cooling. The intercritical welding thermal cycle simulated by using the Gleeble system was applied to the heat-treated base metals to reproduce the intercritical heat-affected zone (ICHAZ). Microstructure, including precipitate and tempered martensite, of the base metal and ICHAZ was carefully characterized with advanced microscopy techniques. Creep strength of the simulated ICHAZs was evaluated at a high creep temperature of 650 °C with a stress of 100 MPa. A correlation between the microstructure and creep behavior of the ICHAZ is built to understand creep rupture mechanisms in the ICHAZ. The results show that more coarse carbides precipitated along the prior austenite grain boundaries after tempering in the water-quenched base metal. These carbides cannot be fully dissolved by the intercritical welding thermal cycle. The simulated ICHAZ generated from the water-quenched base metal underwent a higher grain recovery and growth during the typical post-weld heat treatment at 760 °C. Both simulated ICHAZs from two pre-weld heat treated base metals exhibit an extremely low creep resistance with a typical ductile fracture during creep testing. The faster grain growth and precipitate coarsening in the ICHAZ, simulated from the water-quenched base metal, made it even worse.


2013 ◽  
Vol 749 ◽  
pp. 1-6
Author(s):  
Ji Xing Lin ◽  
Jun Ping Zhang ◽  
Li Yuan Niu ◽  
Da Ren Sun ◽  
Zi Mu Shi ◽  
...  

In this study, Strontium (Sr) was added as modifier during the casting of Al-11.6Si-0.5Mg alloy, and the effect of T6 heat treatment on microstructure and performance of alloy was also investigated. The results showed that the 0.3% Al-8%Sr master alloy can refine effectively the α-Al dendrite and eutectic structure; the best economic process of T6 heat treatment is solution at 535°C for 6 hrs., and water cooling at 50~60°C,aging at 160°C for 6 hrs , then air cooling. After Sr modification and T6 heat treatment, the mechanical properties of alloy are improved remarkably, i.e., the tensile strength increased to 348MPa from 183MPa before modification and the elongation raises from 3.0% to 6.5%. So this alloy is applied to the strain clamp products in electric power fitting industry.


2018 ◽  
Vol 284 ◽  
pp. 30-36
Author(s):  
Gennady G. Mikhailov ◽  
Tatiana M. Lonzinger ◽  
Vadim A. Skotnikov

According to the standard process, normal electrocorundum is heat treated at 700°C in a rotating drum followed by air cooling. Such heat treatment increases the strength characteristics of abrasive grain. When abrasive paper made from grains with reduced brittleness is working, the effect of reducing the cutting ability due to damage and failure of the cutting surfaces is observed. An increase in the performance characteristics of the abrasive paper was studied by improving the self-sharpening of the grain. Improvement of this performance is achieved by thermochemical treatment in a regulated gas atmosphere and cooling according to a special schedule. Normal electrocorundum during heat treatment in an oxidizing atmosphere changes the structural characteristics due to the decomposition of a solid solution of Ti2O3 in α-Al2O3 by oxidation to TiO2. The formation of a block grain structure with microcracks increases the probability of chipping during the grinding tool operation and the appearance of new cutting surfaces.


Sign in / Sign up

Export Citation Format

Share Document