Electrical Performance and Robustness of Ultrathin High-Density Carbon Nanofiber Capacitors on Silicon, Alumina and Glass Substrate Materials

2020 ◽  
Vol 2020 (1) ◽  
pp. 000206-000210
Author(s):  
R. Andersson ◽  
M. Bylund ◽  
V. Desmaris ◽  
S. Kabir ◽  
S. Krause ◽  
...  

Abstract We demonstrate the feasibility of implementing carbon nano fiber based metal-insulator-metal (CNFMIM) capacitors on different substrates such as glass, alumina and silicon for use as integrated or discrete passive components on chips or interposers. The effects of biasing voltage and high operating temperatures on the performance of the devices are also investigated. Capacitance densities of 300 nF/mm2 are demonstrated on all substrates at a device thickness of only 5 μm. The manufactured capacitors feature ESR values at or below 100 mΩ, ESL below 15 pH and show little change in capacitance density when subjected to biasing voltage below breakdown and temperatures up to 150°C, making them a promising candidate for both integrated and discrete miniaturized electronic components for future technology.

Author(s):  
Norman J. Armendariz ◽  
Carolyn McCormick

Abstract Via in pad PCB (Printed Circuit board) technology for passive components such as chip capacitors and resistors, provides the potential for improved signal routing density and reduced PCB area. Because of these improvements there is the potential for PCB cost reduction as well as gains in electrical performance through reduced impedance and inductance. However, not long after the implementation, double digit unit failures for solder joint electrical opens due to capacitor “tombstoning” began to occur. Failure modes included via fill material (solder mask) protrusion from the via as well as “out gassing” and related “tombstoning.” This failure analysis involved investigating a strong dependence on PCB supplier and, less obviously, manufacturing site. Other factors evaluated included via fill material, drill size, via fill thermal history and via fill amount or fill percent. The factor most implicated was incomplete cure of the via fill material. Previous thermal gravimetric analysis methods to determine level of polymerization or cure did not provide an ability to measure and demonstrate via fill cure level in small selected areas or its link to the failures. As a result, there was a metrology approach developed to establish this link and root-cause the failures in the field, which was based on microhardness techniques and noncontact via fill measuring metrologies.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000847-000854 ◽  
Author(s):  
Rabindra N. Das ◽  
John M. Lauffer ◽  
Steven G. Rosser ◽  
Mark D. Poliks ◽  
Voya R. Markovich

This paper discusses thin film technology based on barium titanate (BaTiO3)-epoxy polymer nanocomposites. In particular, we highlight recent developments on high capacitance, large area, thin film passives and their integration in System in a Package (SiP). A variety of nanocomposite thin films ranging from 2 microns to 25 microns thick were processed on PWB substrates by liquid coating or printing processes. SEM micrographs showed uniform particle distribution in the coatings. The electrical performance of composites was characterized by dielectric constant (Dk), capacitance and dissipation factor (loss) measurements. We have designed and fabricated several printed wiring board (PWB) and flip-chip package test vehicles focusing on resistors and capacitors. Two basic capacitor cores were used for this study. One is a layer capacitor. The second capacitor in this case study was discrete capacitor. Resin Coated Copper Capacitive (RC3) nanocomposites were used to fabricate 35 mm substrates with a two by two array of 15mm square isolated epoxy based regions; each having two to six RC3 based embedded capacitance layers. Cores are showing high capacitance density ranging from 15 nF to 30nF depending on Cu area, composition and thickness of the capacitors. In another design, we have used eight layer high density internal core and subsequent fine geometry n (1 to 3) buildup layers to form a n-8-n structure. The eight layer internal core has two resistance layers in the middle and 2 to 6 capacitance layer sequentially applied on the surface. The study also evaluates the resistor materials for embedded passives. Resistors are carbon based pastes and metal based alloys NiCrAlSi. Embedded resistor technology can use either thin film materials, that are applied on the copper foil, or screened carbon based resistor pastes that can achieve any resistor value at any level. For example, combination of 25 ohm per square material and 250 ohm per square material enables resistor ranges from 15 ohms through 30,000 ohms with efficient sizes for the embedded resistors. Similarly, printable resistors can be designed to cover the resistance in the range of 5 ohms to 1 Mohm. The embedded resistors can be laser trimmed to a tolerance of <5% for applications that require tighter tolerance. Reliability of the test vehicles was ascertained by IR-reflow, thermal cycling, PCT (Pressure Cooker Test ) and solder shock. Embedded discrete capacitors were stable after PCT and solder shock. Capacitance change was less than 5% after IR reflow (assembly) preconditioning (3X, 245 °C) and 1400 cycles DTC (Deep Thermal Cycle).


Author(s):  
Vasudivan Sunappan ◽  
Chee Wai Lu ◽  
Lai Lai Wai ◽  
Wei Fan ◽  
Boon Keng Lok

A novel process has been developed to embed discrete (surface mountable) passive components like capacitors, resistors and inductors using printed circuit board fabrication technology. The process comprises of mounting passive components on top surface of a core PCB (printed circuit board) material using surface mount technology. The passive components mounting were designed in multiple clusters within the PCB. Dielectric sheets are sandwiched between top surface of core PCB and second PCB material for lamination process. A direct interconnection of the passive components to one or more integrated circuits (IC) is further accomplished by mounting the ICs on the bottom surface of the core material in an area directly under the passive components. The close proximity of the embedded passive components such as capacitors to an IC improved electrical performance by providing impedance reduction and resonance suppression at high frequency range. The reliability of solder joints was evaluatedd by temperature cycling test.


Nano Hybrids ◽  
2016 ◽  
Vol 10 ◽  
pp. 20-27 ◽  
Author(s):  
S. Nallusamy ◽  
N. Manikanda Prabu

Polymer composite with reinforced fiber is a remarkable development in the field of engineering materials. The applications of composite materials have significantly increased in Defense, Aeronautical and Automobiles because of its specific modulus and high strength characteristics. In composite material development, nano particles reinforcement and nano fiber reinforcement are the most recent methods developed. In this research electrospun carbon nanofiber reinforced mat with polymer epoxy resin composites was prepared. X-ray diffraction, scanning electron microscope and ultrasonic scanning were used to study the morphology and the defect on the specimens for analyzing the structural conditions of the samples for determining the mechanical properties. The result clearly indicates that the Carbon Nanofiber (CNF)/ Polyvinyl Alcohol (PVA) mat improves the flexural strength of the epoxy resin and that 0.015% CNF in PVA gives a better mechanical strength.


1974 ◽  
Vol 1 (2) ◽  
pp. 103-112 ◽  
Author(s):  
J. C. Van Vessem

The rapid progress of semiconductor products in the electronic industry over the past two decades in the group of active components has not been matched by an equal progress of the passive components. Integration has blurred the traditional boundary between components and circuits. With integration penetrating deeper and deeper into electronic circuitry the connecting methods of the IC with the rest of the system becomes a cost and quality determining factor of prime importance. It is stressed that connecting methods of the other, passive components have to be compatible with the connecting method of the IC.


2013 ◽  
Vol 102 (17) ◽  
pp. 173501 ◽  
Author(s):  
Alexander C. Kozen ◽  
Marshall A. Schroeder ◽  
Kevin D. Osborn ◽  
C. J. Lobb ◽  
Gary W. Rubloff

Author(s):  
Yuh-Zheng Lee ◽  
Chung-Ping Liu ◽  
Sha-Man Wang ◽  
Chia-Hsun Chen ◽  
Chung-Wei Wang ◽  
...  

2013 ◽  
Vol 1505 ◽  
Author(s):  
Ananta Raj Adhikari ◽  
Kamal Sarkar ◽  
Karen Lozano

ABSTRACT:Studies have demonstrated that the reinforcement of polymeric matrices using nanofiller can results with better thermo-physical properties of polymer. Carbon nanofiber (CNF) is a unique quasi-one dimensional nanostructure with large numbers of edges and defects compared to carbon nanotube (CNT). Further the availability in large quantity along with lower cost makes them an important nanomaterial for future technology. We have previously used CNF in different thermoplastic polymers. In this study CNFs were used with water soluble thermoplastic aliphatic polyster polylactic acid (PLA) and studied their thermal and mechanical properties. Thermal analysis using Thermogravimetric Analysis showed enhanced thermal stability of the polymer at higher nanotube loading (>1 wt%) and decrease of thermal stability at higher loading (>10 wt%). Crystallization thermogram of PLA was modified heavily with the addition of nanofibers changing clearly from one stage to two stage crystallization. In addition, CNF facilitates the crystallization of PLA resulting in an increase of its crystallization. The mechanical testing showed the steady increase of modulus of the composites with the nanofiber content within the range of study which can be regarded as due to the change in interface property of the composites.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000182-000185
Author(s):  
Iris Labadie

Semiconductor device speeds and circuit operating frequencies have increased substantially over the past decade. Although millimeter-wave technology has been around for over 100 years, it is only within the past 5–10 years that increased demand for millimeter-wave commercial products and services has driven the development of new electronic package designs, low-loss materials, and the transformation of passive components to integrated and smaller geometries. High-reliability applications have employed millimeter-waves for several decades, but typically utilized heavy materials and distributed architectures. The transition of high-reliability millimeter-wave applications to new materials such as low-temperature co-fired ceramics requires innovative package designs to achieve comparable or better electrical performance in a much smaller form factor. Ceramic packaging technology continues to meet or exceed the performance requirements of high-reliability millimeter-wave applications with a broadened portfolio of material sets and innovative internal circuit components such as filter banks, antennas, and waveguides. Today's ceramic package design techniques and materials for applications within current and future high-reliability millimeter-wave markets will be discussed.


2015 ◽  
Vol 2015 (DPC) ◽  
pp. 000939-000957
Author(s):  
Florian Herrault ◽  
M. Yajima ◽  
M. Chen ◽  
C. McGuire ◽  
A. Margomenos

Advances in 2.5D and 3D integration technologies are enabling ultra-compact multi-chip modules. In this abstract, we present the design, fabrication, and experimental characterization of RF inductors microfabricated inside deep silicon recesses. Because silicon is often used as a substrate of packaging material for 3D integration and microelectromechanical systems (MEMS), developing microfabrication technologies to embed passive components in the unused volume of the silicon package is a promising approach to realize ultra-compact RF subsystems. Inductors and capacitors are critical in dc-bias circuits for MMICs in order to suppress low-frequency oscillations. Because it is particularly important to have these passive components as close to the MMIC as possible with minimum interconnection parasitics, silicon-embedded passives are an attractive solution. Further, silicon-embedded passives can potentially reduce the overall volume of RF subsystems when compared to modules using discrete passives. Although inductors inside the volume of silicon wafers have previously been reported, they typically operated in the 1–200 MHz frequency range, mostly featuring inductors with wide (50–100 μm) conductors and wide (50–100 μm) interconductor gaps due to fabrication limitations. We first explored process limitations to fabricate structural and electrical features inside 75 to 100-μm-deep silicon cavities. The cavities were etched into the silicon using deep reactive ion etching. Inside these recesses, we demonstrated the fabrication of thin (0.2 μm) and thick (5 μm) gold patterns with 3 μm resolution using lift-off and electroplating processes, respectively. The lift-off process used an image reversal technique, and the plated gold conductors were fabricated through a 6.5-μm-thick photoresist mold. The feature sizes ranged from 3 to 50 μm. For photoresist exposure, an i-line Canon stepper was utilized, and configured specifically to focus at the bottom of the cavities, a key process requirement to achieve high-resolution features. These microfabrication results enabled the design of high-performance RF inductors, which will be discussed in the next section. In addition, we demonstrated the fabrication of 30-μm-deep 3-μm-diameter silicon-etched features inside these cavities, a stepping stone towards achieving high-capacitance-density integrated trench capacitors embedded inside silicon cavities. The silicon-embedded RF inductors were microfabricated on 500-μm-thick high-resistivity (ρ > 20,000 Ω.cm) silicon wafers. First, 75-μm-deep cavities were etched using DRIE. Various two-port coplanar waveguide (CPW) inductor designs were microfabricated. The inductor microfabrication relied on sputtered titanium/gold seed layers, thick AZ4620 photoresist molds, and three 5-μm-thick electroplated gold layers stacked on top of each other to define the inductor conductor and connections. By using a combination of three electroplated layers, high-power-handling low-loss inductors were fabricated. Measurements were performed on a RF probe station, with on-wafer calibration structures. The losses associated with the CPW launchers were de-embedded prior to inductor measurements, and inductor quality factor greater than 40 was measured on various inductors with inductance of approximately 1 nH, and self-resonant frequency at 30 GHz. These results were in agreement with models performed using SONNET simulation package, and are comparable with than that of inductors fabricated on planar silicon wafers.


Sign in / Sign up

Export Citation Format

Share Document