scholarly journals Resveratrol and Red Wine Function as Antioxidants in the Nervous System without Cellular Proliferative Effects during Experimental Diabetes

2010 ◽  
Vol 3 (6) ◽  
pp. 434-441 ◽  
Author(s):  
Carina Duarte Venturini ◽  
Suélen Merlo ◽  
André Arigony Souto ◽  
Marilda da Cruz Fernandes ◽  
Rosane Gomez ◽  
...  

Chronic hyperglycemia increases oxidative stress status and has been associated with neurological complications in diabetic individuals. This study compared the antioxidant properties of red wine or resveratrol in different brain areas of diabetic and non-diabetic rats, and investigated the effect of them on hippocampal cell proliferation in hippocampal dentate gyrus of diabetic rats. Streptozotocin-induced diabetic and control rats were treated with red wine (4 mL/kg), resveratrol (20 mg/kg) or saline, by oral gavage, for 21 days. Lipid peroxidation (TBARS), catalase and superoxide dismutase were measured to evaluate the oxidative stress and the BrdU-positive cells were assessed to measure changes in cellular proliferation. In diabetic animals, resveratrol showed antioxidant property in the hippocampus and in the striatum, while red wine had an antioxidant effect only in the hippocampus. Neither red wine nor resveratrol reversed the lower hippocampal cell proliferation in diabetic rats. Daily doses of red wine or resveratrol have an antioxidant effect in rats depending on the brain area and the glycemic status.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 744
Author(s):  
Patricia Gutiérrez-Carcedo ◽  
Sergio Navalón ◽  
Rafael Simó ◽  
Xavier Setoain ◽  
Carolina Aparicio-Gómez ◽  
...  

Ceria nanoparticles are cell compatible antioxidants whose activity can be enhanced by gold deposition and by surface functionalization with positive triphenylphosphonium units to selectively target the mitochondria. The antioxidant properties of these nanoparticles can serve as the basis of a new strategy for the treatment of several disorders exhibiting oxidative stress, such as cancer, diabetes or Alzheimer’s disease. However, all of these pathologies require a specific antioxidant according with their mechanism to remove oxidant species excess in cells and diminish their effect on mitochondrial function. The mechanism through which ceria nanoparticles neutralize oxidative stress and their effect on mitochondrial function have not been characterized yet. In the present study, the mitochondria antioxidant effect of ceria and ceria-supported gold nanoparticles, with or without triphenylphosphonium functionalization, was assessed in HeLa cells. The effect caused by ceria nanoparticles on mitochondria function in terms of mitochondrial membrane potential (∆Ψm), adenosine triphosphate (ATP) production, nuclear respiratory factor 1 (NRF1) and nuclear factor erythroid–2–like 1 (NFE2L1) was reversed by the presence of gold. Furthermore, this effect was enhanced when nanoparticles were functionalized with triphenylphosphonium. Our study illustrates how the mitochondrial antioxidant effect induced by ceria nanoparticles can be modulated by the presence of gold.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Hui-Yu Huang ◽  
Mallikarjuna Korivi ◽  
Ying-Ying Chaing ◽  
Ting-Yi Chien ◽  
Ying-Chieh Tsai

Pleurotus tuber-regiumcontains polysaccharides that are responsible for pharmacological actions, and medicinal effects of these polysaccharides have not yet been studied in diabetic rats. We examined the antidiabetic, antihyperlipidemic, and antioxidant properties ofP. tuber-regiumpolysaccharides in experimental diabetic rats. Forty rats were equally assigned as diabetic high-fat (DHF) diet and polysaccharides treated DHF groups (DHF+1P, DHF+2P, and DHF+3P, 20 mg/kg bodyweight/8-week). Diabetes was induced by chronic low-dose streptozotocin injections and a high-fat diet to mimic type 2 diabetes. Polysaccharides (1P, 2P, and 3P) were extracted from three different strains ofP. tuber-regium. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels substantially decreased, while serum insulin levels were restored by polysaccharides treatment compared to DHF. Furthermore, plasma total cholesterol, triglycerides, and low-density lipoprotein levels were significantly(P<0.01)lower in polysaccharide groups. High-density lipoprotein levels were attenuated with polysaccharides against diabetes condition. Polysaccharides inhibited(P<0.01)the lipid peroxidation index (malondialdehyde), and restored superoxide dismutase and glutathione peroxidase activities in the liver of diabetic rats. The antihyperglycemic property of polysaccharides perhaps boosts the antioxidant system that attenuates oxidative stress. We emphasize thatP. tuber-regiumpolysaccharides can be considered as an alternative medicine to treat hyperglycemia and oxidative stress in diabetic rats.


2014 ◽  
Vol 89 (8) ◽  
pp. 552-557 ◽  
Author(s):  
A Yay ◽  
D Akkuş ◽  
H Yapıslar ◽  
E Balcıoglu ◽  
MF Sonmez ◽  
...  

2013 ◽  
Vol 16 (2) ◽  
pp. 352 ◽  
Author(s):  
Saeed Samarghandian ◽  
Abasalt Borji ◽  
Mohammad Bagher Delkhosh ◽  
Fariborz Samini

Purpose. Clinical research has confirmed the efficacy of several plant extracts in the modulation of oxidative stress associated with diabetes mellitus. Findings indicate that safranal has antioxidant properties. The aim of the present study was the evaluation of possible protective effects of safranal against oxidative damage in diabetic rats. Methods. In this study, the rats were divided into the following groups of 8 animals each: control, untreated diabetic, three safranal (0.25, 0.50, 0.75 mg/kg/day)-treated diabetic groups. Diabetes was induced by streptozotocin (STZ) in rats. STZ was injected intraperitoneally at a single dose of 60 mg/kg for diabetes induction. Safranal (intraperitoneal injection) was administered 3 days after STZ administration; these injections were continued to the end of the study (4 weeks). At the end of the 4-week period, blood was drawn for biochemical assays. In order to determine the changes of cellular antioxidant defense systems, antioxidant enzymes including glutathione peroxidase (GSHPx), superoxide dismutase (SOD) and catalase (CAT) activities were measured in serum. Moreover we also measured serum nitric oxide (NO) and serum malondialdehyde (MDA) levels, a marker of lipid peroxidation.  Results. STZ-induced diabetes caused an elevation (p < 0.001) of blood glucose, MDA, NO, total lipids, triglycerides and cholesterol, with reduction of GSH level and CAT and SOD activities. The results indicated that the significant elevation in the blood glucose, MDA, NO, total lipids, triglycerides, cholesterol and reduction of glutathione level and CAT and SOD activity were ameliorated in the safranal–treated diabetic groups compared with the untreated groups, in a dose dependent manner (p < 0.05, p<0.01, p < 0.001). Conclusion. These results suggest that safranal has antioxidant properties and improves chemically-induced diabetes and its complications by modulation of oxidative stress. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Nutrients ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 218 ◽  
Author(s):  
Dovilė Grauzdytė ◽  
Jovilė Raudoniūtė ◽  
Ieva Kulvinskienė ◽  
Edvardas Bagdonas ◽  
Inga Stasiulaitienė ◽  
...  

According to World Health Organisation (WHO) air pollution increases the risk of cardiovascular disorders, respiratory diseases, including COPD, lung cancer and acute respiratory infections, neuro-degenerative and other diseases. It is also known that various phytochemicals may mitigate such risks. This study tested if phytochemicals mangiferin (MNG) and Z-ligustilide (Z-LG) may protect PAH-exposed human lung bronchial epithelial cells (BEAS-2B). Organic PAH extract was obtained from the urban fine PM with high benzo(a)pyrene content collected in Eastern European mid-sized city during winter heating season. Cell proliferation traits and levels of intracellular oxidative stress were examined. Effect of MNG (0.5 µg/mL) alone or in combination with PAH on bronchial epithelium wound healing was evaluated. Both phytochemicals were also evaluated for their antioxidant properties in acellular system. Treatment with MNG produced strong cytoprotective effect on PAH-exposed cells (p < 0.01) while Z-LG (0.5 µg/mL) exhibited strong negative effect on cell proliferation in untreated and PAH-exposed cells (p < 0.001). MNG, being many times stronger antioxidant than Z-LG in chemical in vitro assays (p < 0.0001), was also able to decrease PAH-induced oxidative stress in the cell cultures (p < 0.05). Consequently MNG ameliorates oxidative stress, speeds up wound healing process and restores proliferation rate in PAH-exposed bronchial epithelium. Such protective effects of MNG in air pollution affected airway epithelium stimulate further research on this promising phytochemical.


2016 ◽  
Vol 94 (6) ◽  
pp. 651-661 ◽  
Author(s):  
Sanaa M. Abd El-Twab ◽  
Hanaa M. Mohamed ◽  
Ayman M. Mahmoud

Chronic hyperglycemia is associated with impairment of testicular function. The current study aimed to investigate the protective effects and the possible mechanisms of taurine and pioglitazone against diabetes-induced testicular dysfunction in rats. Diabetes was induced by streptozotocin injection. Both normal and diabetic rats received taurine (100 mg/kg) or pioglitazone (10 mg/kg) orally and daily for 6 weeks. Diabetic rats showed a significant (P < 0.001) increase in glycosylated hemoglobin, glucose, homeostasis model of insulin resistance, and pro-inflammatory cytokines. Serum insulin, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were significantly (P < 0.001) decreased in diabetic rats. Taurine and pioglitazone alleviated hyperglycemia, decreased pro-inflammatory cytokines, and increased circulating levels of insulin, testosterone, LH, and FSH. Gene and protein expression of LH and FSH receptors and cytochrome P450 17α-hydroxylase (CYP17) was significantly (P < 0.001) down-regulated in testes of diabetic rats, an effect which was significantly increased after administration of taurine and pioglitazone. In addition, taurine and pioglitazone significantly decreased lipid peroxidation and DNA damage, and enhanced activity of the antioxidant enzymes in testes of diabetic rats. In conclusion, taurine and pioglitazone exerted protective effects against diabetes-induced testicular damage through attenuation of hyperglycemia, inflammation, oxidative stress and DNA damage, and up-regulation of the pituitary/gonadal axis.


2016 ◽  
Vol 4 (03) ◽  
pp. 58-68
Author(s):  
Yahya Ali Alqadhi ◽  
Bhalchandra Waykar ◽  
Sujaya De ◽  
Amitava Pal

The global prevalence of chronic diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer and Alzheimer's disease is on the rise. These diseases constitute the major causes of death globally. Honey is a natural substance with many medicinal properties such as antibacterial, hepatoprotective, hypoglycemic, reproductive, and antihypertensive and antioxidant. This review presents findings that indicate honey may ameliorate oxidative stress in the gastrointestinal tract (GIT), liver, pancreas, kidney, reproductive organs and plasma/serum. Besides, the review highlights data that demonstrate the synergistic antioxidant effect of honey and antidiabetic drugs in the pancreas, kidney, and serum of diabetic rats. These data suggest that honey, administered alone or in combination with conventional therapy, might be a novel antioxidant in the management of chronic diseases commonly associated with oxidative stress. In view of the fact that the majority of these data emanate from animal studies, there is an urgent need to investigate this antioxidant effect of honey in human subjects with chronic or degenerative diseases.


Author(s):  
Kishwor Bhandari ◽  
Sanju Acharya ◽  
AK Srivastava

Introduction: According to the epidemiological studies, diabetes mellitus has become a potential cause of male infertility. Knowledge regarding how diabetes mellitus interferes with the process of spermatogenesis and results in infertility needs the molecular study in the testis in diabetic condition. Enhanced oxidative stress and changes in antioxidant capacity are considered to play an important role in the pathogenesis of chronic diabetes mellitus. So, this study was established to investigate the activity of enzymatic antioxidants and oxidative stress in the testis of diabetic model rats. Material & Methods: Diabetes mellitus was induced in the rat by intraperitoneal injection of Streptozotocin. The rats were sacrificed and the dissection was done to take out the testis. The testes were processed for the activity of enzymatic antioxidants. Results: It was found that oxidative stress was increased in the testes of diabetic rats. The sperms were also affected by the chronic hyperglycemia.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1562
Author(s):  
Wesam Al-Amarat ◽  
Mohammad H. Abukhalil ◽  
Osama Y. Althunibat ◽  
Manal A. Alfwuaires ◽  
Mashael M. Alnamshan ◽  
...  

Chronic hyperglycemia increases the risk of liver damage. Oxidative stress and aberrant inflammatory response are entangled in diabetes-associated liver injury. This study evaluated the protective effect of the flavonoid galangin (Gal) on glucose intolerance, liver injury, oxidative stress, inflammatory response, and Nrf2/HO-1 signaling in diabetic rats. Diabetes was induced by streptozotocin (STZ), and the rats received Gal for six weeks. STZ-induced rats showed glucose intolerance, hypoinsulinemia, elevated glycated hemoglobin (HbA1c), and decreased liver glycogen. Gal ameliorated glucose intolerance, reduced HbA1c%, increased serum insulin and liver glycogen and hexokinase activity, and suppressed glycogen phosphorylase, glucose-6-phosphatase and fructose-1,6-biphosphatase in diabetic rats. Circulating transaminases, ALP and LDH, and liver ROS, MDA, TNF-α, IL-1β, and IL-6 were increased and GSH, SOD, and CAT were diminished in diabetic rats. In addition, diabetic rats exhibited multiple histopathological alterations and marked collagen deposition. Treatment with Gal mitigated liver injury, prevented histopathological alterations, decreased ROS, MDA, pro-inflammatory cytokines, Bax and caspase-3, and enhanced cellular antioxidants and Bcl-2. Gal downregulated hepatic Keap1 in diabetic rats and upregulated Nrf2 and HO-1 mRNA as well as HO-1 activity. Molecular modeling studies revealed the ability of Gal to bind to and inhibit NF-κB and Keap1, and also showed its binding pattern with HO-1. In conclusion, Gal ameliorates hyperglycemia, glucose intolerance, oxidative stress, inflammation, and apoptosis in diabetic rats. Gal improved carbohydrate metabolizing enzymes and upregulated Nrf2/HO-1 signaling.


Sign in / Sign up

Export Citation Format

Share Document