Assessment of Hot Peppers for Aflatoxin and Mold Proliferation during Storage

2011 ◽  
Vol 74 (5) ◽  
pp. 830-835 ◽  
Author(s):  
QUMER IQBAL ◽  
MUHAMMAD AMJAD ◽  
MUHAMMAD RAFIQUE ASI ◽  
AGUSTIN ARIÑO

Aflatoxin contamination and mold proliferation in three hot pepper hybrids (Sky Red, Maha, and Wonder King) were studied during 5 months of storage at three temperatures (20, 25, and 30°C) and under different packaging conditions (low-density polyethylene bags and jute bags). The presence of aflatoxins in hot pepper samples was determined by high-performance liquid chromatography with a UV-Vis detector. Sampling for analysis of aflatoxins, total mold counts, and Aspergillus counts was carried out at 0, 50, 100, and 150 days of storage. Hot peppers packed in jute bags were more susceptible to aflatoxin contamination than those packed in polyethylene bags; aflatoxin concentrations were 75% higher in peppers stored in jute bags. The effect of storage temperature resulted in aflatoxin concentrations that were 61% higher in hot peppers stored at 25 and 30°C than in those stored at 20°C. Of the three pepper hybrids, Wonder King was more susceptible to aflatoxin contamination, with a maximum of 1.50 μg/kg when packed in jute bags and stored at 25°C for 150 days. However, no sample exceeded the maximum permitted level for total aflatoxins in spices established by European Union regulations (10 μg/kg). Total mold counts and Aspergillus counts increased with storage duration, but all counts were significantly lower in peppers stored in polyethylene bags. A gradual increase in temperature during prolonged storage of hot peppers in combination with aeration may be the main reasons for increases in fungal biomass and Aspergillus proliferation with the subsequent aflatoxin production.

2013 ◽  
Vol 2 (5) ◽  
pp. 10 ◽  
Author(s):  
John Maina Wagacha ◽  
Charity K. Mutegi ◽  
Maria E. Christie ◽  
Lucy W. Karanja ◽  
Job Kimani

<p>Peanut kernels of Homabay Local, Valencia Red, ICGV-SM 12991 and ICGV-SM 99568 cultivars were stored for six months in jute, polypropylene and polyethylene bags to assess the effect of storage bags, temperature and R.H. on fungal population and aflatoxin contamination. Moisture content (M.C.), fungal population and aflatoxin levels were determined before storage and after every 30 days during storage. Isolates of <em>Aspergillus flavus</em> and <em>A. parasiticus</em> were assayed for production of aflatoxin B1, B2, G1 and G2. The correlation between MC, population of <em>A. flavus</em> and <em>A. parasiticus</em> and aflatoxin levels in peanuts was also determined. Six fungal pathogens were commonly isolated from the peanut samples and occurred as follows in decreasing order: <em>Penicillium</em> spp. (106.6 CFU/g), <em>A. flavus</em> L-strain (4.8 CFU/g), <em>A. flavus</em> S-strain (2.9 CFU/g), <em>A. niger </em>(2.6 CFU/g), <em>A. parasiticus </em>(1.7 CFU/g) and <em>A. tamarii </em>(0.2 CFU/g). The overall population of <em>A. flavus</em> L-strain was 66% higher than that of <em>A. flavus</em> S-strain. Ninety one percent of <em>A. flavus</em> and <em>A. parasiticus</em> isolates produced at least one of the four aflatoxin types assayed, with 36% producing aflatoxin B1. Total aflatoxin levels ranged from 0 - 47.8 µg/kg with samples stored in polyethylene and jute bags being the most and least contaminated, respectively. Eighty nine percent and 97% of the peanut samples met the EU (? 4 µg/kg) and Kenyan (? 10 µg/kg) regulatory standards for total aflatoxin, respectively. Peanuts should be adequately dried to safe moisture level and immediately packaged in a container - preferably jute bags - which will not promote critical increases in fungal population and aflatoxin contamination.</p>


2019 ◽  
Vol 18 (1) ◽  
pp. 126-139
Author(s):  
T. A. OYEDELE ◽  
I. A. KEHINDE ◽  
C. G. AFOLABI ◽  
E. O. OYEDEJI

One of the limitations of African yam bean (AYB) (Sphenostylis sternocarpa) is poor storage ability due to the adverse effect of seed-borne fungi. This study was conducted to examine the effects of storage methods on nutritive composition of AYB  seeds stored in three types of storage materials viz; jute bags, polypropylene bags and plastic bowls. Freshly harvested AYB seeds were stored in all the storage materials for 6 months using 2 × 3 factorial (2 AYB cultivars and 3 storage methods) in 3 replicates. The proximate analysis of the stored AYB seeds was carried out at 3 and 6 months after storage using standard methods. The temperature and relative humidity of the store room were recorded monthly. Seeds stored in jute bags gave the best values for crude protein (24.87%), ash (5.69%) and fat content (6.64%) but recorded least values for crude fibre (2.55%), carbohydrate (50.86%) and moisture content (12.68%) at the 6th month of storage. Temperature of the store room decreased from 32.9 ºC - 28.3ºC, while the relative humidity increased from 78% - 86%. Decreased incidence of field fungi namely: Rhizopus oryzae, Aspergillus flavus, Geotricum candidum, Aspergillus fumigatus and Mucor meihei was accompanied by increase in storage fungi viz: Apergillus niger, Mucor hiemalis, Penicillium espansum and Penicillium atrovenetum with prolonged storage. The study showed that out of the three storage materials, jute bag was more effective in preserving AYB seeds.  


2012 ◽  
Vol 75 (8) ◽  
pp. 1528-1531 ◽  
Author(s):  
QUMER IQBAL ◽  
MUHAMMAD AMJAD ◽  
MUHAMMAD RAFIQUE ASI ◽  
AGUSTIN ARIÑO

The effect of gamma radiation on moisture content, total mold counts, Aspergillus counts, and aflatoxins of three hot pepper hybrids (Sky Red, Maha, and Wonder King) was investigated. Whole dried peppers packed in polyethylene bags were gamma irradiated at 0 (control), 2, 4, and 6 kGy and stored at 25°C for 90 days. Gamma radiation proved to be effective in reducing total mold and Aspergillus counts in a dose-dependent relationship. Total mold counts in irradiated peppers immediately after treatments were significantly lowered compared with those in nonirradiated samples, achieving 90 and 99% reduction at 2- and 4-kGy doses, respectively. Aspergillus counts were significantly reduced, by 93 and 97%, immediately after irradiation at doses of 2 and 4 kGy, respectively. A radiation dose of 6 kGy completely eliminated the population of total molds and Aspergillus fungi. The evolution of total molds in control and irradiated samples indicated no further fungal proliferation during 3 months of storage at 25°C. Aflatoxin levels were slightly affected by radiation doses of 2 and 4 kGy and showed a nonsignificant reduction of 6% at the highest radiation dose of 6 kGy. The distinct effectiveness of gamma radiation in molds and aflatoxins can be explained by the target theory of food irradiation, which states that the likelihood of a microorganism or a molecule being inactivated by gamma rays increases as its size increases.


Animals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 166 ◽  
Author(s):  
Nimra Azeem ◽  
Muhammad Nawaz ◽  
Aftab Ahmad Anjum ◽  
Shagufta Saeed ◽  
Saba Sana ◽  
...  

Aflatoxin contamination in human food and animal feed is a threat to public safety. Aflatoxin B1 (AFB1) can be especially damaging to poultry production and consequently economic development of Pakistan. The present study assessed the in vitro binding of AFB1 by indigenously characterized probiotic lactobacilli. Six isolates (Lactobacillus gallinarum PDP 10, Lactobacillus reuetri FYP 38, Lactobacillus fermentum PDP 24, Lactobacillus gallinarum PL 53, Lactobacillus paracasei PL 120, and Lactobacillus gallinarum PL 149) were tested for activity against toxigenic Aspergillus flavus W-7.1 (AFB1 producer) by well diffusion assay. Only three isolates (PL 53, PL 120, and PL 149) had activity against A. flavus W-7.1. The ameliorative effect of these probiotic isolates on AFB1 production was determined by co-culturing fungus with lactobacilli for 12 days, followed by aflatoxin quantification by high-performance liquid chromatography. In vitro AFB1 binding capacities of lactobacilli were determined by their incubation with a standard amount of AFB1 in phosphate buffer saline at 37 °C for 2 h. AFB1 binding capacities of isolates ranged from 28–65%. Four isolates (PDP 10, PDP 24, PL 120, and PL 149) also ceased aflatoxin production completely, whereas PL 53 showed 55% reduction in AFB1 production as compared to control. The present study demonstrated Lactobacillus gallinarum PL 149 to be an effective candidate AFB1 binding agent against Aspergillus flavus. These findings further support the binding ability of lactic acid bacteria for dietary contaminants.


Toxins ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 687
Author(s):  
Vanja Vlajkov ◽  
Mila Grahovac ◽  
Dragana Budakov ◽  
Marta Loc ◽  
Ivana Pajčin ◽  
...  

Maize is one of the leading export products in the Republic of Serbia. As a country where economic development depends on agriculture, maize production plays a critical role as a crop of strategic importance. Potential aflatoxin contamination of maize poses a risk to food and feed safety and tremendous economic losses. No aflatoxin contamination of maize samples harvested in 2019 and 2020 in different localities in the Republic of Serbia was detected by the Enzyme-Linked Immunosorbent Assay (ELISA) test and High-Performance Liquid Chromatography (HPLC) method. On the other hand, the Cluster Amplification Patterns (CAP) analyses of the isolated Aspergillus flavus strains from 2019 maize samples confirmed the presence of key biosynthesis genes responsible for aflatoxin production. Artificial inoculation and subsequent HPLC analysis of the inoculated maize samples confirmed the high capacity of the A. flavus strains for aflatoxin production, pointing to a high risk of contamination under favorable conditions. Prevention of aflatoxin contamination is primarily based on A. flavus control, where biocontrol agents play a significant role as sustainable disease management tools. In this study, antagonistic activity screening of the novel strains belonging to the Bacillus genus indicated superior suppression of A. flavus strains by two Bacillus strains isolated from the rhizosphere of Phaseolus vulgaris.


1998 ◽  
Vol 25 (2) ◽  
pp. 92-99 ◽  
Author(s):  
Y. López ◽  
N. P. Keller ◽  
B. Sarr ◽  
T. D. Phillips ◽  
R. G. Cuero ◽  
...  

Abstract Peanut seed and pods are susceptible to contamination by aflatoxin (AF), a carcinogenic mycotoxin produced by Aspergillus flavus Links Fr. and A. parasiticus Speare. Efforts to evaluate peanut lines for resistance to AF contamination have been impeded by limitations to the methodologies available for AF detection. AF cannot be seen by visible light and its detection involves grinding seed tissue in organic solvents, separation of phases, and detection by ELISA, high performance liquid chromatography (HPLC) or thin layer chromatography. These methodologies are time-consuming, expensive, labor-intensive, and are uninformative in defining the tissues of the peanut seed and pod that are most frequently contaminated with AF. Aspergillus AF mutants which accumulate norsolorinic acid (NOR), an orange-pigmented AF pathway intermediate, provide an easy and convenient mean to detect AF contamination. A visual rating scheme for NOR contamination of peanut seed was developed that correlated favorably to HPLC detection of both NOR and AF (r = 0.96 and 0.95, respectively). When screening the 38 plant progenies that comprise Tamspan 90 (a spanish cultivar), NOR was first seen in the intercotyledonary cavity and the interfacial surface of cotyledons and testae in seeds examined from infected pods. Immature pods were often heavily contaminated with NOR. Six of the 38 lines accumulated low levels of NOR in two laboratory tests. Additional studies are needed to determine if these results are predictive of aflatoxin contamination under field conditions.


1979 ◽  
Vol 62 (5) ◽  
pp. 1076-1079 ◽  
Author(s):  
Lawrence M Lenovich ◽  
W Jeffrey Hurst

Abstract Aflatoxin was produced in both non-autoclaved and autoclaved Ivory Coast cocoa beans inoculated with Aspergillus parasiticus NRRL 2999 under optimum laboratory growth conditions. Total aflatoxin levels ranged from 213 to 5597 ng/g substrate. Aflatoxin was quantitated by using high pressure liquid chromatography (HPLC). Raw, non-autoclaved cocoa beans, also inoculated with aspergilli, produced 6359 ng aflatoxin/g substrate. Variation in aflatoxin production between bean varieties was observed. Total aflatoxin levels of 10,446 and 23,076 ng/g substrate were obtained on Ivory Coast beans inoculated with A. parasiticus NRRL 2999 and NRRL 3240, respectively. Aflatoxin production on Trinidad and Malaysian beans was 28 and 65 ng aflatoxin/g substrate. These data support previously reported low level natural aflatoxin contamination in cocoa.


2020 ◽  
Vol 6 (4) ◽  
pp. 383
Author(s):  
Premila Narayana Achar ◽  
Pham Quyen ◽  
Emmanuel C. Adukwu ◽  
Abhishek Sharma ◽  
Huggins Zephaniah Msimanga ◽  
...  

Aspergillus species are known to cause damage to food crops and are associated with opportunistic infections in humans. In the United States, significant losses have been reported in peanut production due to contamination caused by the Aspergillus species. This study evaluated the antifungal effect and anti-aflatoxin activity of selected plant-based essential oils (EOs) against Aspergillus flavus in contaminated peanuts, Tifguard, runner type variety. All fifteen essential oils, tested by the poisoned food technique, inhibited the growth of A. flavus at concentrations ranging between 125 and 4000 ppm. The most effective oils with total clearance of the A. flavus on agar were clove (500 ppm), thyme (1000 ppm), lemongrass, and cinnamon (2000 ppm) EOs. The gas chromatography-mass spectrometry (GC-MS) analysis of clove EO revealed eugenol (83.25%) as a major bioactive constituent. An electron microscopy study revealed that clove EO at 500 ppm caused noticeable morphological and ultrastructural alterations of the somatic and reproductive structures. Using both the ammonia vapor (AV) and coconut milk agar (CMA) methods, we not only detected the presence of an aflatoxigenic form of A. flavus in our contaminated peanuts, but we also observed that aflatoxin production was inhibited by clove EO at concentrations between 500 and 2000 ppm. In addition, we established a correlation between the concentration of clove EO and AFB1 production by reverse-phase high-performance liquid chromatography (HPLC). We demonstrate in our study that clove oil could be a promising natural fungicide for an effective bio-control, non-toxic bio-preservative, and an eco-friendly alternative to synthetic additives against A. flavus in Georgia peanuts.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2890
Author(s):  
Chikere G. Nkwonta ◽  
Macdara O’Neill ◽  
Niharika Rahman ◽  
Mary Moloney ◽  
Patrick J. Forrestal ◽  
...  

N-(n-butyl) thiophosphoric triamide (NBPT) is a urease inhibitor utilised in urea-based fertilizers. In Ireland, fertilizer treated with NBPT is applied to pasture to mitigate both ammonia and nitrous oxide emissions, but concerns arise as to the potential for residues in milk products. A quick ultrafiltration extraction and ultra-high performance liquid chromatography coupled with mass spectrometry triple quadrupole (UHPLC-MS/MS) quantitation method was developed and validated in this study. The method was applied in the analysis of samples collected from a field study investigating potential transfer of NBPT residues into milk. NBPT and NBPTo residues, were extracted from fortified milk samples and analysed on a UHPLC-MS/MS with recoveries ranging from 74 to 114%. Validation of the UHPLC-MS/MS method at low (0.0020 mg kg−1) and high (0.0250 mg kg−1) concentration levels in line with SANTE/12682/2019 showed overall trueness in the range of 99 to 104% and precision between 1 and 10%, RSD for both compounds. The limit of quantitation (LOQ) was 0.0020 mg kg−1 and other tested parameters (linearity, sensitivity, specificity, matrix effect, robustness, etc.) satisfied acceptance criteria. Stability assessment using spiked samples revealed the compounds were stable in raw and pasteurised milk for 4 weeks at –80 °C storage temperature. Maintaining samples at pH 8.5–9.0 further improved stability. Analysis of 516 milk samples from the field study found that NBPT and NBPTo concentrations were below the LOQ of 0.0020 mg kg−1, thus suggesting very low risk of residues occurring in the milk. The method developed is quick, robust, and sensitive. The method is deemed fit-for-purpose for the simultaneous determination of NBPT and NBPTo in milk.


2011 ◽  
Vol 4 (1) ◽  
pp. 37-42 ◽  
Author(s):  
A. Rosas-Taraco ◽  
E. Sanchez ◽  
S. García ◽  
N. Heredia ◽  
D. Bhatnagar

Toxigenic fungi invade crops prior to harvest as well as during storage and produce harmful, even carcinogenic toxins such as aflatoxins. Since consumers demand safe commodities, and due to enhanced public awareness of the dangers of many synthetic fungicides, the importance of investigating alternative, natural products to control these toxigenic fungi is clear. This study investigated the effect of aqueous extracts of Agave americana on growth, conidia and aflatoxin production. Aspergillus parasiticus strains SRRC 148, SRRC 143 (Su-1), and A. parasiticus SRRC 162, a mutant (nor-) that accumulates norsolorinic acid (NOR, an orange-coloured intermediate of the aflatoxin pathway), were first inoculated into Adye and Mateles liquid medium, then plant extracts were added, and incubated at 28 °C for 7 days. Aflatoxin and norsolorinic acid were assayed by HPLC and spectrophotometry, respectively. While the extract of A. americana stimulated growth of the studied fungi, conidiogenesis, norsolorinic acid accumulation (in the nor- mutant), and aflatoxin production were significantly affected. The reduction was produced by the extracts at concentrations higher than 5-10 mg/ml, where all types of total aflatoxin analysed (aflatoxins B1, B2, G1 and G2) were reduced from 64% to >99% in the whole culture, and a reduction of 75% of norsolorinic acid. The results of the present work indicate that extracts of A. americana may be promising safe alternatives to harmful fungicides for controlling aflatoxin contamination.


Sign in / Sign up

Export Citation Format

Share Document