scholarly journals Influence of Spent Bleaching Earth and Misspend Cement on Shear Strength Behaviour of Unsaturated Clays

Author(s):  
Kamadi Subhadra and Dr. Ch Bhavannarayana

Expansive clay is a major source of undulations induced in any type of structures. Swelling of expansive soils causes serious problems and produces harm to many structures. Many research organizations are doing extensive work on waste materials concerning the viability and environmental suitability. Spent bleaching earth and misspend cement are waste derivatives from oil industry and cement warehouse. To avoid dumping problem and storage problems, it is the best method technique applied in expansive soils. Attempts are made to investigate the stabilization process identified in unconfined compressive strength and tri-axial compressive strength.Stability of any structure depends on strength properties of underground soil on which it is constructed. Structures basically transfer all the loads come on itself directly to the ground. If the underlying soil is not stable enough to support transferred loads then various types of failure occur such as settlement of the structure, cracks and so on. To solve this issue, soil improvement is necessary because it not only lowers the construction cost but also cuts the risk of any damage of structure later on. Numerous improvement methods can be adopted to make ordinary soil stable enough to support the structural loads. In this research work a number of tests may conduct using both ordinary soil and stabilised soil. This thesis explains the strength behavior of SBE treated black cotton soil reinforced with MC. The various percentage of SBE as 5%, 10%, 15%, 20% and 25% was used to find out the optimum value of RBI Grade. MC has been randomly included into the SBE treated soil at four different percentages of MC content, i.e. 2%, 4%, 6%, 8% and 10%.

From the fast few decades, several techniques were introduced inorder to modify the behaviour of expansive clays. The use of strong electrolytes like calcium chloride (CaCl2 ), aluminum trichloride (AlCl3 ) and iron chloride (FeCl3 ) were extensively used in various civil engineering applications. Expansive soils possesses alternate shrinkage and swelling with the removal and addition of water from it. Iron chloride was effectively used to alter the swelling and shrinkage and also improve the engineering behaviour of expansive clays. Therefore, in the current work an effort is made for study the influence of iron chloride (FeCl3 ) on the strength behaviour of the expansive soil. The outcomes from the laboratory investigation proved that the usage of iron chloride (FeCl3 ) produce reduction in swelling and improvement in the strength. It was found that 1% FeCl3 be the optimum for both the UCS and CBR. Hence, from the investigation it was showed that iron chloride is a valuable stabilizer to enhance the properties of black cotton soil and to create it apt for various applications of Civil Engineering.


2021 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
Bhanu Prakash Darsi ◽  
Kumar Molugaram ◽  
Saisantosh Vamshi Harsha Madiraju

The rapid growth of population and fast urbanization has resulted in the reduction of the good quality of available land. Black cotton (BC) soil is one of such problematic soils, though they are very fertile soils, they are not suitable for the foundation of roads and buildings. They are expansive clays with a high potential for shrinking or swelling as a result of changing moisture content. Due to the intensive shrink-swell process, surface cracks appear during dry seasons. A small amount of rainfall, such as 6mm can make these soils impassable for all traffic. About 23% of the area in India is covered by BC soil. To utilize expansive soils effectively, proper ground improvement techniques are to be adopted. One of the most widely used techniques is to stabilize the expansive soil with conventional admixtures like lime, GGBS, cement, and fly ash. In the present study, an attempt is made to modify the engineering properties of black cotton soil. This research work presents the improvement of engineering characteristics of expansive soils using Lime and GGBS as an additive. For experimental work, Lime of 2%, 4%, and 6% used and corresponding 5%, and 10% of GGBS is used. Tests like the California Bearing Ratio (CBR) test, Unconfined Compression Strength (UCS) test, proctor test, Atterberg’s limits performed. After stabilization, it was found that UCS and CBR of soil increased significantly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bendadi Hanumantha Rao ◽  
Peddireddy Sreekanth Reddy ◽  
Bijayananda Mohanty ◽  
Krishna R. Reddy

AbstractMicrolevel properties such as mineralogical and chemical compositions greatly control the macro behaviour of expansive soils. In this paper, the combined effect of mineral (i.e. montmorillonite, MMC) and chemical contents (i.e. Ca and Na in their total (T), leachable (L) and exchangeable form (CEC)) on swelling behaviour is investigated in a comprehensive way. Several 3-dimensional (3D) graphs correlating MMC and Ca/Na ratio, together, with swelling property (swelling potential, Sa, and swelling pressure, Sp) are developed. 3D plots, in general, portrayed a non-linear relationship of Sa and Sp with MMC and Ca/Na ratio, together. It is hypothesized that swelling initially is triggered by chemical parameters due to their quick and rapid ionization capability, but the overall swelling phenomenon is largely controlled by MMC. It is importantly found that expansive soils are dominant with divalent Ca++ ions up to MMC of 67% and beyond this percentage, monovalent Na+ ions are prevalent. From the interpretation of results, the maximum Sa of 18% and Sp of 93 kPa is measured at MMC of 43%, (Ca/Na)T of 10–14 and (Ca/Na)L of 2–7. It is concluded from study that total CEC + MMC for determining Sa and (Ca/Na)T + MMC for determining Sp are superior parameters to be considered. The findings of the study also excellently endorsed the results of Foster32, who stated that ionization of Na or Ca depends on the constituent mineral contents. The findings presented herein are unique, interesting and bear very practical significance, as no earlier research work reported such findings by accounting for chemical and mineralogical parameters impact, in tandem, on swelling properties.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1006
Author(s):  
Samsul Rizal ◽  
Abdul Khalil H. P. H. P. S. ◽  
A. A. Oyekanmi ◽  
Niyi G. Olaiya ◽  
C. K. Abdullah ◽  
...  

The exponential increase in textile cotton wastes generation and the ineffective processing mechanism to mitigate its environmental impact by developing functional materials with unique properties for geotechnical applications, wastewater, packaging, and biomedical engineering have become emerging global concerns among researchers. A comprehensive study of a processed cotton fibres isolation technique and their applications are highlighted in this review. Surface modification of cotton wastes fibre increases the adsorption of dyes and heavy metals removal from wastewater. Cotton wastes fibres have demonstrated high adsorption capacity for the removal of recalcitrant pollutants in wastewater. Cotton wastes fibres have found remarkable application in slope amendments, reinforcement of expansive soils and building materials, and a proven source for isolation of cellulose nanocrystals (CNCs). Several research work on the use of cotton waste for functional application rather than disposal has been done. However, no review study has discussed the potentials of cotton wastes from source (Micro-Nano) to application. This review critically analyses novel isolation techniques of CNC from cotton wastes with an in-depth study of a parameter variation effect on their yield. Different pretreatment techniques and efficiency were discussed. From the analysis, chemical pretreatment is considered the most efficient extraction of CNCs from cotton wastes. The pretreatment strategies can suffer variation in process conditions, resulting in distortion in the extracted cellulose’s crystallinity. Acid hydrolysis using sulfuric acid is the most used extraction process for cotton wastes-based CNC. A combined pretreatment process, such as sonication and hydrolysis, increases the crystallinity of cotton-based CNCs. The improvement of the reinforced matrix interface of textile fibres is required for improved packaging and biomedical applications for the sustainability of cotton-based CNCs.


Expansive soils are problematic soils for Civil Engineers. Black cotton (BC) soils possess low strength and high compressibility, due to these properties black cotton soils are considered to be challenging one for analysis. To achieve desired properties of soil for construction purpose these black cotton soil must be enhanced to meet its requirement. To modify the properties of black cotton soils, many treatment methods are there. In this paper an attempt has been made to improve the properties of black cotton soil by using industrial waste through stabilization method. By stabilizing the soil properties are enhanced and make it suitable for subgrade construction. In this work, the combined effect of Lime and Phosphogypsum (PG) on compaction characteristics, Atterberg’s Limit, Unconfined Compressive Strength (UCS) for original soil, California Bearing Ratio (CBR) and direct shear Test of a black cotton soil with percentage varying of Lime and Phosphogypsum was carried out. The soil samples were tested for tri-axial compression test and CBR tests were carried out after 4 days curing period. From the results, it has been inferred that the black cotton soil treated with Lime and Phosphogypsum in the percentages of (4:4) has better strength characteristics. Hence, it may be concluded that Lime and Phosphogypsum can be used for stabilization of black cotton soils for pavement subgrade


The focus on sustainability is at its peak in the construction industries in the last couple of decades. That includes green constructions such as rammed earth construction. Due to media exposure and carbon emission, people are undeniably turning to green and sustainable buildings. Furthermore, there is an improper management pattern of solid waste management found in developing countries, such as open burning and dumping of solid wastes. In which paper waste is not handled in a good way. There arefew places in developing countries where developing countries follow proper management of solid waste. Paper waste is present in each city because people are using it for daily life. Paper waste has fibre in them and has cellulose content. These components of paper waste are suitable for compressive strength. It has a side effect that it increases water absorbability. The reason for this research work is to reduce paper waste and reduce cement content. This paper also aims to find the durability and strength properties of rammed earth construction.


Author(s):  
Prerna Priya ◽  
Ran Vijay Singh

Expansive Black cotton clay soils are widely distributed worldwide, and are a significant damage to infrastructure and buildigs.It is a common practice around the world to stabilize black cotton soil using fly ash to improve the strength of stabilized sub- base and sub grade soil. Soil stabilization is the improvement of strength or bearing capacity of soil by controlled compaction, proportioning or addition of suitable admixtures or stabilizers. The Black cotton soils are extremely hard when dry, but lose its strength fully when in wet condition. In monsoon they guzzle water and swell and in summer they shrink on evaporation of water from there. Because of its high Swelling and shrinkage characteristics the black cotton soils has been a challenge to the highway engineers.So in this research paper fly ash has been used to improve the various strength properties of natural black cotton soil.The objective of this research paper is to improve the engineering properties of black cotton soil by adding different percentage of fly ash by the weight of soil and make it suitable for construction. A series of standard Proctor tests (for calculation of MDD and OMC) and California Bearing Ratio (C.B.R) tests are conducted on both raw Black cotton soil and mixed soil with different percentages of fly ash (5%, 10%, 20%, 30%) by weight. A comparison between properties of raw black cotton soil, black cotton soil mixed with fly ash are performed .It is found that the properties of black cotton soil mixed with fly ash are suitably enhanced.


2018 ◽  
Vol 7 (2.25) ◽  
pp. 74
Author(s):  
Soundarya M.K ◽  
Bhuvaneshwari S ◽  
Prasanna Kumar.S

The deterioration of the structures which are built on the expansive soils is due to its volume change behavior, due to the presence of Mont-morillonite minerals in soil. Hence this soil requires adequate stabilization before commencement of any construction activities. The stabili-zation phenomenon in which addition suitable additives completely alters the behavior of the soil by changing the basic properties and there-by increasing the bearing strength of soil. The choice of the additives depends on the ease and permanence of the stabilizing characteristics achieved for the expansive soil. In this paper, an attempt is done to evaluate the behavior of soil when blended with additives like saw dust ash, lime and lignosulphonate at varying blending ratio. The objective of the research work is to focus on the change in the plasticity charac-teristics by utilizing the industrial waste as additive due to its cementitious value, making it eco-friendly and reduction in cost. Lignosulpho-nate is a by-product of paper pulp industry, generated during the sulphite process. From the literature, the optimum percentage for stabilizing works for lime and lignosulphonate was found to be two to eight percent and one to three percent respectively. Basic Index properties and compaction characteristics test were determined for both virgin and treated soil. The additives decreased the plasticity index, causing ag-glomeration of clay particles involving pozzolanic reaction. 


2020 ◽  
pp. 108201322095673
Author(s):  
M Al-Bachir ◽  
Y Koudsi

This research work was undertaken to evaluate the physicochemical parameters of oil from the cherry kernel non-irradiated and irradiated at 3 and 6 kGy of gamma irradiation for two storage periods (0 and 12 months). The acid value, peroxide value, thiobarbituric acid reactive substances value, iodine value, saponification value refractive index (peroxide value), and the color parameters of cherry kernel oils were determined. The results indicated that the extracted cherry kernel oils were liquid at room temperature with color varying from light yellow to deep red. The physicochemical properties of cherry kernel oils including acid value, peroxide value, thiobarbituric acid reactive substances, iodine value, saponification value, and refractive index values were 1.19 mg KOH g−1, 9.01 meq2 kg−1, 0.014 mg MDA kg−1, 99.48 KOH g−1 I2 100 g−1, 194.50 mg KOH g−1, and 1.472, respectively. Generally, gamma irradiation doses and storage time increased acid value, peroxide value, thiobarbituric acid reactive substances, and refractive index value of cherry kernel oils, whereas no significant (p > 0.05) change due to irradiation was recorded in iodine value, saponification value, and in color parameter (L*, a*, b*, and ΔE values) of cherry kernel oils. However, the properties of cherry kernel oils revealed that the cherry kernel is a good source of oil which could be used for industrial purposes.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Sajjad Hussain ◽  
Zahid Ur Rehman ◽  
Noor Mohammad ◽  
Muhammad Tahir ◽  
Khan Shahzada ◽  
...  

The empirical and numerical design approaches are considered very important in the viable and efficient design of support systems, stability analysis for tunnel, and underground excavations. In the present research work, the rock mass rating (RMR) and tunneling quality index (Q-system) were used as empirical methods for characterization of rock mass based on real-time geological and site geotechnical data and physical and strength properties of rock samples collected from the alignment of tunnel. The rock mass along the tunnel axis was classified into three geotechnical units (GU-1, GU-2, and GU-3). The support systems for each geotechnical unit were designed. The 2D elastoplastic finite-element method (FEM) was used for the analysis of rock mass behavior, in situ and redistribution stresses, plastic thickness around the tunnel, and performance of the design supports for the selection of optimum support system among RMR and Q supports for each geotechnical unit of tunnel. Based on results, Q support systems were found more effective for GU-1 and GU-2 as compared to RMR support systems and RMR support systems for GU-3 as compared to Q support systems.


Sign in / Sign up

Export Citation Format

Share Document