scholarly journals Seismic Strengthening of Low Strength Concrete Columns using High Ductile Metal Strap Confinement: A Case Study of Kindergarten School in Northern Thailand

2020 ◽  
Vol 17 (12) ◽  
pp. 1335-1347
Author(s):  
Thanongsak IMJAI ◽  
Monthian SETKIT ◽  
Reyes GARCIA ◽  
Piti SUKONTASUKKUL ◽  
Suchart LIMKATANYU

The 2014 Chaing Rai earthquake (Thailand) caused extensive damage in many reinforced concrete (RC) buildings built before the introduction of modern seismic design guidelines. Much of the damage on these buildings was attributed to the inadequate capacity and/or ductility of columns. As a result, suitable and cost-effective strengthening techniques for such substandard elements are necessary. This article presents a case study on the seismic strengthening of a one-story RC kindergarten school located in Ampor Pan, Chaing Rai province. The building was partially damaged during the afore-mentioned earthquake, which led to cracking in walls, columns, and beam-column joints. As part of the initial assessment, innovative repair solutions were sought to minimize construction time, labor, and material cost. Accordingly, an innovative strengthening technique that uses Post-tension Metal Strapping (PTMS) was proposed to strengthen the damaged RC elements. This article presents details of the structural assessment performed on the building, as well as details of the PTMS strengthening strategy, which was applied for the first time in a real full-scale structure. This article contributes towards the validation and application of the PTMS strengthening on real structures, which had not been possible until now.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
P. Israsena ◽  
S. Isaradisaikul ◽  
A. Noymai ◽  
S. Boonyanukul ◽  
A. Hemakom ◽  
...  

This paper reviews the development process and discusses the key findings which resulted from our multidisciplinary research team’s effort to develop an alternative digital hearing suitable for low-resource countries such as Thailand. A cost-effective, fully programmable digital hearing aid, with its specifications benchmarking against WHO’s recommendations, was systematically designed, engineered, and tested. Clinically it had undergone a full clinical trial that employed the outcome measurement protocol adopted from the APHAB, the first time implemented in Thai language. Results indicated that using the hearing aid improves user’s satisfaction in terms of ease of communication, background noises, and reverberation, with clear benefit after 3 and 6 months, confirming its efficacy. In terms of engineering, the hearing aid also proved to be robust, passing all the designated tests. As the technology has successfully been transferred to a local company for the production phase, we also discuss other challenges that may arise before the device can be introduced into the market.


2017 ◽  
Vol 11 (1) ◽  
pp. 35-63
Author(s):  
Ruth Roded

Beginning in the early 1970s, Jewish and Muslim feminists, tackled “oral law”—Mishna and Talmud, in Judaism, and the parallel Hadith and Fiqh in Islam, and several analogous methodologies were devised. A parallel case study of maintenance and rebellion of wives —mezonoteha, moredet al ba?ala; nafaqa al-mar?a and nush?z—in classical Jewish and Islamic oral law demonstrates similarities in content and discourse. Differences between the two, however, were found in the application of oral law to daily life, as reflected in “responsa”—piskei halacha and fatwas. In modern times, as the state became more involved in regulating maintenance and disobedience, and Jewish law was backed for the first time in history by a state, state policy and implementation were influenced by the political system and socioeconomic circumstances of the country. Despite their similar origin in oral law, maintenance and rebellion have divergent relevance to modern Jews and Muslims.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


Author(s):  
Cristian Cocconcelli ◽  
Bongsuk Park ◽  
Jian Zou ◽  
George Lopp ◽  
Reynaldo Roque

Reflective cracking is frequently reported as the most common distress affecting resurfaced pavements. An asphalt rubber membrane interlayer (ARMI) approach has been traditionally used in Florida to mitigate reflective cracking. However, recent field evidence has raised doubts about the effectiveness of the ARMI when placed near the surface, indicating questionable benefits to reflective cracking and increased instability rutting potential. The main purpose of this research was to develop guidelines for an effective alternative to the ARMI for mitigation of near-surface reflective cracking in overlays on asphalt pavement. Fourteen interlayer mixtures, covering three aggregate types widely used in Florida, and two nominal maximum aggregate sizes (NMAS) were designed according to key characteristics identified for mitigation of reflective cracking, that is, sufficient gradation coarseness and high asphalt content. The dominant aggregate size range—interstitial component (DASR-IC) model was used for the design of all mixture gradations. A composite specimen interface cracking (CSIC) test was employed to evaluate reflective cracking performance of interlayer systems. In addition, asphalt pavement analyzer (APA) tests were performed to determine whether the interlayer mixtures had sufficient rutting resistance. The results indicated that interlayer mixtures designed with lower compaction effort, reduced design air voids, and coarser gradation led to more cost-effective fracture-tolerant and shear-resistant (FTSR) interlayers. Therefore, preliminary design guidelines including minimum effective film thickness and maximum DASR porosity requirements were proposed for 9.5-mm NMAS (35 µm and 50%) and 4.75-mm NMAS FTSR mixtures (20 µm and 60%) to mitigate near-surface reflective cracking.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1051
Author(s):  
Jonattan Gallegos-Catalán ◽  
Zachary Warnken ◽  
Tania F. Bahamondez-Canas ◽  
Daniel Moraga-Espinoza

Orally inhaled drug products (OIDPs) are an important group of medicines traditionally used to treat pulmonary diseases. Over the past decade, this trend has broadened, increasing their use in other conditions such as diabetes, expanding the interest in this administration route. Thus, the bioequivalence of OIDPs is more important than ever, aiming to increase access to affordable, safe and effective medicines, which translates into better public health policies. However, regulatory agencies leading the bioequivalence process are still deciding the best approach for ensuring a proposed inhalable product is bioequivalent. This lack of agreement translates into less cost-effective strategies to determine bioequivalence, discouraging innovation in this field. The Next-Generation Impactor (NGI) is an example of the slow pace at which the inhalation field evolves. The NGI was officially implemented in 2003, being the last equipment innovation for OIDP characterization. Even though it was a breakthrough in the field, it did not solve other deficiencies of the BE process such as dissolution rate analysis on physiologically relevant conditions, being the last attempt of transferring technology into the field. This review aims to reveal the steps required for innovation in the regulations defining the bioequivalence of OIDPs, elucidating the pitfalls of implementing new technologies in the current standards. To do so, we collected the opinion of experts from the literature to explain these trends, showing, for the first time, the stakeholders of the OIDP market. This review analyzes the stakeholders involved in the development, improvement and implementation of methodologies that can help assess bioequivalence between OIDPs. Additionally, it presents a list of methods potentially useful to overcome some of the current limitations of the bioequivalence standard methodologies. Finally, we review one of the most revolutionary approaches, the inhaled Biopharmaceutical Classification System (IBCs), which can help establish priorities and order in both the innovation process and in regulations for OIDPs.


2021 ◽  
pp. 0308518X2110266
Author(s):  
Neil Argent ◽  
Sean Markey ◽  
Greg Halseth ◽  
Laura Ryser ◽  
Fiona Haslam-McKenzie

This paper is concerned with the socio-spatial and ethical politics of redistribution, specifically the allocation of natural resources rents from political and economic cores to the economic and geographical peripheries whence the resource originated. Based on a case study of the coal seam gas sector in Queensland's Surat Basin, this paper focuses on the operation of the Queensland State Government's regional development fund for mining and energy extraction-affected regions. Employing an environmental justice framework, we critically explore the operation of these funds in ostensibly helping constituent communities in becoming resilient to the worst effects of the ‘staples trap’. Drawing on secondary demographic and housing data for the region, as well as primary information collected from key respondents from mid-2018 to early 2019, we show that funds were distributed across all of the local government areas, and allocated to projects and places primarily on a perceived economic needs basis. However, concerns were raised with the probity of the funds’ administration. In terms of recognition justice, the participation of smaller and more remote towns and local Indigenous communities was hampered by their structural marginalisation. Procedurally, the funds were criticised for the lack of local consultation taken in the development and approval of projects. While spatially concentrated expenditure may be the most cost-effective use of public monies, we argue that grant application processes should be open, transparent and inclusive, and the outcomes cognisant of the developmental needs of smaller communities, together with the need to foster regional solidarity and coherence.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 893
Author(s):  
Olufunto T. Fanoro ◽  
Sundararajan Parani ◽  
Rodney Maluleke ◽  
Thabang C. Lebepe ◽  
Jose R. Varghese ◽  
...  

We herein report a facile, green, cost-effective, plant-mediated synthesis of gold nanoparticles (AuNPs) for the first time using Combretum erythrophyllum (CE) plant leaves. The synthesis was conducted at room temperature using CE leaf extract serving as a reducing and capping agent. The as-synthesized AuNPs were found to be crystalline, well dispersed, and spherical in shape with an average diameter of 13.20 nm and an excellent stability of over 60 days. The AuNPs showed broad-spectrum antibacterial activities against both pathogenic Gram-positive (Staphylococcus epidermidis (ATCC14990), Staphylococcus aureus (ATCC 25923), Mycobacterium smegmatis (MC 215)) and Gram-negative bacteria (Proteus mirabilis (ATCC 7002), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 13822), Klebsiella oxytoca (ATCC 8724)), with a minimum inhibition concentration of 62.5 µg/mL. In addition, the as-synthesized AuNPs were highly stable with exceptional cell viability towards normal cells (BHK- 21) and cancerous cancer cell lines (cervical and lung cancer).


Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1886
Author(s):  
Arezoo Zahediasl ◽  
Amin E. Bakhshipour ◽  
Ulrich Dittmer ◽  
Ali Haghighi

In recent years, the concept of a centralized drainage system that connect an entire city to one single treatment plant is increasingly being questioned in terms of the costs, reliability, and environmental impacts. This study introduces an optimization approach based on decentralization in order to develop a cost-effective and sustainable sewage collection system. For this purpose, a new algorithm based on the growing spanning tree algorithm is developed for decentralized layout generation and treatment plant allocation. The trade-off between construction and operation costs, resilience, and the degree of centralization is a multiobjective problem that consists of two subproblems: the layout of the networks and the hydraulic design. The innovative characteristics of the proposed framework are that layout and hydraulic designs are solved simultaneously, three objectives are optimized together, and the entire problem solving process is self-adaptive. The model is then applied to a real case study. The results show that finding an optimum degree of centralization could reduce not only the network’s costs by 17.3%, but could also increase its structural resilience significantly compared to fully centralized networks.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. A. B. Abbasi ◽  
V. F. Fusco ◽  
O. Yurduseven ◽  
T. Fromenteze

AbstractThis paper presents a physical frequency-diverse multimode lens-loaded cavity, designed and used for the purpose of the direction of arrival (DoA) estimation in millimetre-wave frequency bands for 5G and beyond. The multi-mode mechanism is realized using an electrically-large cavity, generating spatio-temporally incoherent radiation masks leveraging the frequency-diversity principle. It has been shown for the first time that by placing a spherical constant dielectric lens (constant-ϵr) in front of the radiating aperture of the cavity, the spatial incoherence of the radiation modes can be enhanced. The lens-loaded cavity requires only a single lens and output port, making the hardware development much simpler and cost-effective compared to conventional DoA estimators where multiple antennas and receivers are classically required. Using the lens-loaded architecture, an increase of up to 6 dB is achieved in the peak gain of the synthesized quasi-random sampling bases from the frequency-diverse cavity. Despite the fact that the practical frequency-diverse cavity uses a limited subset of quasi-orthogonal modes below the upper bound limit of the number of theoretical modes, it is shown that the proposed lens-loaded cavity is capable of accurate DoA estimation. This is achieved thanks to the sufficient orthogonality of the leveraged modes and to the presence of the spherical constant-ϵr lens which increases the signal-to-noise ratio (SNR) of the received signal. Experimental results are shown to verify the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document