scholarly journals Synthesis of ZIF-11- effect of source of zinc salts on the structure

2021 ◽  
Vol 10 (1) ◽  
pp. 79-83
Author(s):  
Luy Nguyen Thi ◽  
Vu Dang Cong ◽  
Thu Nguyen Thi Anh ◽  
Lien Tuong Kieu ◽  
Duc Hoang Van

In this paper, ZIF-11 material was synthesized from benzimidazole and different zinc salt sources at room temperature. The obtained samples were characterized using XRD, SEM, FTIR and TGA measurements. The results showed that the synthesized materials had nano-size, and uniformity with the sharp dodecahedrons structure of ZIF-11. Zinc sources had an influence on the size and nature of the ZIF-11 crystal. The average crystalline size of the nanoparticles calculated by Scherrer equation were 85.5 nm for sample of zinc nitrate, 91.9 nm for sample of zinc chloride and 111.5 nm for sample of zinc acetate. The obtained samples had high thermal stability ( 460 °C). The adsorption capacity of the synthesized materials for iodine from aqueous solution was very high (236 mg/g).

2021 ◽  
Vol 10 (1) ◽  
pp. 98-103
Author(s):  
Lien Tuong Kieu ◽  
Duc Hoang Van ◽  
Linh Nguyen Le My ◽  
Thu Nguyen Thi Anh

In the present paper, ZIF-67 material was synthesized from cobalt (II) nitrate hexahydrate and 2-methyl imidazole in three different solvents (methanol, ethanol and acetone) at room temperature. The obtained samples were characterized using XRD, SEM, FTIR, TGA and nitrogen adsorption/desorption measurements. The results show that the synthesized ZIF-67 materials had a high purity, nano-size, and uniformity with the sharp dodecahedrons structure of ZIF-67. Solvents had an influence on the size and nature of the ZIF-67 crystal. The average crystalline size of the nanoparticles calculated by Scherrer equation were 64 nm for sample in acetone solvent, 128 nm for sample in ethanol solvent and 132 nm for sample in methanol solvent. The obtained samples had high thermal stability ( 320 °C). The ZIF-67 material with ethanol solvent had a high specific surface area (SBET) of 1506 m2/g. The synthesized samples exhibited better adsorption capacity of methyl oranges than that of rhodamine B.


2005 ◽  
Vol 877 ◽  
Author(s):  
Oleg Prilutskiy ◽  
Eugene A. Katz ◽  
Alexander I. Shames ◽  
D. Mogilyanski ◽  
Emma Mogilko ◽  
...  

AbstractCarbon nanocapsules with a ferromagnetic core of single-crystalline Fe3O4 are demonstrated to be effectively synthesized and collected separately from the other nano-carbon products of the low-temperature reaction of catalytic disproportionation of carbon monoxide. HRTEM demonstrated a defect-free crystalline structure of the Fe3O4 nanoparticles. The encapsulating carbon shells of the Fe3O4 nanoparticles are stable in air at room temperature, but do not prevent them at high temperatures. Accordingly, these nanoparticles may also act as catalysts for the corresponding production of carbon nanomaterials via carbon monoxide disproportionation. In particular, we demonstrate the corresponding transformation of a Fe3O4 core to an iron carbide nanoparticle with simultaneous formation of additional encapsulating carbon layers. Characterization of the synthesized materials by DC magnetization represents clearly resolved hysteresis loops. However characteristic S-shape of the loops (magnetization is still not saturated at 16 kOe) points out some superparamagnetic effects driven by the nano-size origin of the samples. Analysis of the sample's EPR spectra provides an additional insight to the coexistence of several magnetic phases in the synthesized nanomaterials.


Author(s):  
N.J. Long ◽  
M.H. Loretto ◽  
C.H. Lloyd

IntroductionThere have been several t.e.m. studies (1,2,3,4) of the dislocation arrangements in the matrix and around the particles in dispersion strengthened single crystals deformed in single slip. Good agreement has been obtained in general between the observed structures and the various theories for the flow stress and work hardening of this class of alloy. There has been though some difficulty in obtaining an accurate picture of these arrangements in the case when the obstacles are large (of the order of several 1000's Å). This is due to both the physical loss of dislocations from the thin foil in its preparation and to rearrangement of the structure on unloading and standing at room temperature under the influence of the very high localised stresses in the vicinity of the particles (2,3).This contribution presents part of a study of the Cu-Cr-SiO2 system where age hardening from the Cu-Cr and dispersion strengthening from Cu-Sio2 is combined.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


MRS Bulletin ◽  
2000 ◽  
Vol 25 (11) ◽  
pp. 21-30 ◽  
Author(s):  
Joel S. Miller ◽  
Arthur J. Epstein

Molecule-based magnets are a broad, emerging class of magnetic materials that expand the materials properties typically associated with magnets to include low density, transparency, electrical insulation, and low-temperature fabrication, as well as combine magnetic ordering with other properties such as photoresponsiveness. Essentially all of the common magnetic phenomena associated with conventional transition-metal and rare-earth-based magnets can be found in molecule-based magnets. Although discovered less than two decades ago, magnets with ordering temperatures exceeding room temperature, very high (∼27.0 kOe or 2.16 MA/m) and very low (several Oe or less) coercivities, and substantial remanent and saturation magnetizations have been achieved. In addition, exotic phenomena including photoresponsiveness have been reported. The advent of molecule-based magnets offers new processing opportunities. For example, thin-film magnets can be prepared by means of low-temperature chemical vapor deposition and electrodeposition methods.


1992 ◽  
Vol 02 (02) ◽  
pp. 151-159
Author(s):  
LIU SHIJIE ◽  
WANG JIANG ◽  
HU ZAOHUEI ◽  
XIA ZHONGHUONG ◽  
GAO ZHIGIANG ◽  
...  

GaAs (100) crystals were implanted with 100 keV S+ to a dose of 3×1015 cm−2 in a nonchanneling direction at room temperature, and treated with rapid thermal annealing (RTA). He+ Rutherford backscattering and particle-induced X-ray emission in channeling mode in combination with transmission electron microscopy (TEM) were used to study the damage and the lattice location of S atoms. It is revealed that the RTA at 950 °C for 10 sec has resulted in a very good recovery of crystallinity with a few residual defects in the form of dislocation loops, and a very high substitutionality (~90%). The activation efficiency and the Hall mobility of the implanted samples are found to be low after the electrical measurements. Based on these results an extended dopant diffusion effect for the residual defects and a correlation between the electrical properties and defect complexes are suggested.


Author(s):  
Ming-Liang Zhu ◽  
Fu-Zhen Xuan ◽  
Zhengdong Wang

The fatigue properties of a low strength weld metal in a dissimilar welding joint in high cycle and very high cycle regimes were investigated by fully reversed axial tests in air at room temperature and 370°C. A clear duplex S-N curve existed as a result of the transition of fatigue failure mode from surface-induced failure to internal-induced failure at 370°C, while the S-N curve was continuously decreased at room temperature. A new model was successfully proposed to predict fatigue life, and interpret the crack initiation modes transition from surface inclusion to interior inclusion. It was concluded that cracks were initiated by competition among non-metallic inclusions, welding pores and discontinuous microstructures in high cycle regime. While in the very high cycle regime, non-metallic inclusions were the dominant crack initiation mechanism which depended on stress level, inclusion size as well as inclusion depth.


2001 ◽  
Vol 664 ◽  
Author(s):  
Baojie Yana ◽  
Jeffrey Yanga ◽  
Kenneth Lord ◽  
Subhendu Guha

ABSTRACTA systematic study has been made of the annealing kinetics of amorphous silicon (a-Si) alloy solar cells. The cells were deposited at various rates using H2 dilution with radio frequency (RF) and modified very high frequency (MVHF) glow discharge. In order to minimize the effect of annealing during light soaking, the solar cells were degraded under 30 suns at room temperature to quickly reach their saturated states. The samples were then annealed at an elevated temperature. The J-V characteristics were recorded as a function of annealing time. The correlation of solar cell performance and defect density in the intrinsic layer was obtained by computer simulation. Finally, the annealing activation energy distribution (Ea) was deduced by fitting the experimental data to a theoretical model. The results show that the RF low rate solar cell with high H2 dilution has the lowest Ea and the narrowest distribution, while the RF cell with no H2 dilution has the highest Ea and the broadest distribution. The MVHF cell made at 8Å/s withhigh H2 dilution shows a lower Ea and a narrower distribution than the RF cell made at 3 Å/s, despite the higher rate. We conclude that different annealing kinetics plays an important role in determining the stabilized performance of a-Si alloy solar cells.


2019 ◽  
Vol 19 (2) ◽  
pp. 89-94
Author(s):  
Muhammad Ilham Maulana

[ID] Ketergantungan manusia terhadap teknologi memasuki Revolusi Industri 4.0 sangat tinggi. Contoh penerapan inovasi di bidang teknologi informasi salah satunya adalah superkomputer dari material superkonduktor. Material superkonduktor identik dengan material non ferromagnetik karena sifatnya diamagnetis sempurna. Namun, sejak ditemukannya material superkonduktor berbasis logam ferromagnetik, penelitian terus dikembangkan, salah satunya material FeSe. Beberapa parameter yang perlu diperhatikan pada pembuatan material FeSe untuk memperoleh sifat superkonduktor terbaiknya diantaranya komposisi stoikiometri, penambahan doping, dan proses pembuatan material FeSe seperti proses pemaduan dan sintering. Dalam penelitian ini, pengaruh variasi doping Mg akan dianalisis terhadap sifat superkonduktor, morfologi, dan fasa yang terbentuk pada material superkonduktor FeSe. Material FeSe dibuat dengan metode reaksi padatan dalam tabung tertutup (Powder in Sealed Tube) secara insitu. Temperatur sintering yang digunakan 845⁰C yang ditahan selama 6 jam, dengan kenaikan temperatur 7⁰C/menit dari temperatur kamar, dan laju pendinginan normalizing. Kandidat material superkonduktor terbaik terdapat pada sampel Mg0.01Fe0.99Se. Didapatkan Temperatur kritis (Tc)onset = 15.42 K dan Tczero = 5.4 K. Morfologi sampel menunjukkan kristalisasi besar. Lalu, persentase fraksi volume fasa superkonduktornya juga merupakan yang terbesar yaitu 81.99%. [EN] Human dependence on technology into the Industrial Revolution 4.0 is very high. Example, the application of innovations in information technology is supercomputer from superconducting materials. Superconducting materials are identical from non-ferromagnetic materials because tend perfectly diamagnetic. However, since ferromagnetic-metal-based superconducting material discovered, research continues to be developed, like FeSe material. Some parameters that need to be considered in making FeSe material to obtain the best superconductor properties include stoichiometric composition, doping addition, and process of making FeSe materials like synthesis and sintering treatment. In this study, the effect of Mg-doped variations will be analyzed towards properties of superconductors, morphology, and phases formed in FeSe superconducting materials. MgxFe1-xSe made by solid-state reaction method in sealed tube (Powder in Sealed Tube) “insituely”. The sintering temperature used 845⁰C which held for 6 hours, with 7⁰C/minute temperature rise from room-temperature and normalizing cooling rate used. The best candidate superconducting material came from Mg0.01Fe0.99Se, obtained critical temperature (Tc)onset = 15.42 K, and Tczero = 5.4 K. Sample morphology shows a large crystallization. Then, the percentage fraction of the superconducting phase was also the largest, which is 81.99%.


Sign in / Sign up

Export Citation Format

Share Document