Study of the ability to form biofilms of microorganisms isolated from the milk industry in Canada

2020 ◽  
Author(s):  
Coralie Goetz ◽  
Nissa Niboucha ◽  
Julie Jean

<p>The ability of microorganisms to form biofilms has become a major problem in the dairy industry in Canada, notably by affecting the quality and the safety of the by-products. Established biofilms are difficult to remove during the CIP cleaning system and may become resistant to sanitizers. Therefore, it is important to identify and characterize the microorganisms associated to biofilm in the Canadian dairy industry, allowing to develop improvement strategies of biofilm control. The purpose of this study is to evaluate the ability to form biofilms by spoilage microorganisms isolated in processing plants in Canada. For this purpose, 19 strains were isolated from problems associated with the formation of biofilms in the dairy industry and identified using a MALDI-TOF mass spectrometer. The single species biofilm production of these isolates was then measured after a crystal violet coloration using 96-well microplates. The results revealed different biofilm formation profiles depending of the isolates in culture medium. Indeed, 7/19 isolates are moderate or strong biofilm producers and 12/19 isolates are negative or weak biofilm producers. Furthermore, enzymatic treatments revealed that the composition of the biofilms was different depending of the species but also the isolates. In conclusion, the results suggest that some of the isolates collected in the dairy industry have the ability to produce moderate or strong biofilms and thus, to facilitate the persistence of other spoilage microorganisms but also potential pathogenic microorganisms such as <em>Listeria monocytogene</em>s. The characterization of those biofilms will be helpful to the development of an effective approach allowing a better control of the biofilms in the dairy industry.</p>

Author(s):  
Coralie Goetz ◽  
Jules Larouche ◽  
Maribel Velez Aristizabal ◽  
Nissa Niboucha ◽  
Julie Jean

The aim of this study was to evaluate the ability of microorganisms isolated from the dairy industry to form biofilms and to investigate the efficacity of organic peroxyacids (peracetic, perpropionic and perlactic acids and BioDestroy®) to eradicate those biofilms. Eighteen microorganisms were isolated from Quebec dairy processing plants that have issues associated with biofilm formation and were presumptively identified by MALDI-TOF mass spectrometry. The single-species biofilm-producing ability of the isolates was then evaluated using 96-well microplates. Eight out of eighteen (8/18) of these isolates were identified as moderate or strong biofilm producers, and ten out of eighteen (10/18) resulted as negative or weak biofilm producers. The efficacy of above-mentioned disinfectants was tested on the stronger biofilm producing bacteria using the MBEC (Minimum Biofilm Eradication Concentration) assay. After 5 min, all the disinfectants tested successfully eradicated both the single and mixed biofilms when applied following the recommended concentration. However, the efficacy of organic peroxyacids was significantly variable at lower concentrations. For example, 25 ppm of BioDestroy® were sufficient to eradicate all the biofilms, except for Pseudomonas azotoformans PFl1A. Unfortunately, microscopic observations highlighted those dead cells were still attached to the surfaces. In conclusion, our results suggest that some microorganisms found in dairy plants can produce tenacious biofilms that are, however, still susceptible to disinfectants, including organic peroxyacids. Further studies would be needed in order to confirm these observations using a dynamic method to mimic in vivo conditions. IMPORTANCE Biofilm forming microorganisms are a major issue in the food industry, including dairy industry, because of their negative impact on products quality. Biofilms are difficult to remove by clean-in-place (CIP) procedures commonly used in processing plants and may be less sensitive to sanitizers. Therefore, it is important to identify these microorganisms, in order to develop biofilm control strategies. The results gathered in the present study could contribute to this aim, even though it was carried out using only static methods.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Author(s):  
Reda Bellaouchi ◽  
Houssam Abouloifa ◽  
Yahya Rokni ◽  
Amina Hasnaoui ◽  
Nabil Ghabbour ◽  
...  

Abstract Background This work aims to study the optimal conditions of the fermentation culture medium used for the production of extracellular enzymes (amylase, cellulase, lipase, and protease) from previously isolated Aspergillus niger strains in date by-products. Results The five most powerful isolates selected based on the zone of degradation formed on Petri plates by the substrate were subjected to the quantitative evaluation of their enzymatic production. All five strains showed almost similar API-ZYM profiles, with minor variations observed at the level of some specific enzyme expression. The production of cellulase and amylase was depending on pH and incubation temperatures. ASP2 strain demonstrated the high production rate of amylase (at pH 5 and 30 °C) and cellulase (at pH 6 and 30 °C) for 96 h of incubation. Conclusion The A. niger showed the ability to produce several extracellular enzymes and can be used in the valorization of different agroindustrial residues.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 491
Author(s):  
Alejandra Ramirez-Hernandez ◽  
Ana K. Carrascal-Camacho ◽  
Andrea Varón-García ◽  
Mindy M. Brashears ◽  
Marcos X. Sanchez-Plata

The poultry industry in Colombia has implemented several changes and measures in chicken processing to improve sanitary operations and control pathogens’ prevalence. However, there is no official in-plant microbial profile reference data currently available throughout the processing value chains. Hence, this research aimed to study the microbial profiles and the antimicrobial resistance of Salmonella isolates in three plants. In total, 300 samples were collected in seven processing sites. Prevalence of Salmonella spp. and levels of Enterobacteriaceae were assessed. Additionally, whole-genome sequencing was conducted to characterize the isolated strains genotypically. Overall, the prevalence of Salmonella spp. in each establishment was 77%, 58% and 80% for plant A, B, and C. The mean levels of Enterobacteriaceae in the chicken rinsates were 5.03, 5.74, and 6.41 log CFU/mL for plant A, B, and C. Significant reductions were identified in the counts of post-chilling rinsate samples; however, increased levels were found in chicken parts. There were six distinct Salmonella spp. clusters with the predominant sequence types ST32 and ST28. The serotypes Infantis (54%) and Paratyphi B (25%) were the most commonly identified within the processing plants with a high abundance of antimicrobial resistance genes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 847
Author(s):  
Florian N. Gailliègue ◽  
Mindaugas Tamošiūnas ◽  
Franck M. André ◽  
Lluis M. Mir

Sonoporation is the process of cell membrane permeabilization, due to exposure to ultrasounds. There is a lack of consensus concerning the mechanisms of sonoporation: Understanding the mechanisms of sonoporation refines the choice of the ultrasonic parameters to be applied on the cells. Cells’ classical exposure systems to ultrasounds have several drawbacks, like the immersion of the cells in large volumes of liquid, the nonhomogeneous acoustic pressure in the large sample, and thus, the necessity for magnetic stirring to somehow homogenize the exposure of the cells. This article reports the development and characterization of a novel system allowing the exposure to ultrasounds of very small volumes and their observation under the microscope. The observation under a microscope imposes the exposure of cells and Giant Unilamellar Vesicles under an oblique incidence, as well as the very unusual presence of rigid walls limiting the sonicated volume. The advantages of this new setup are not only the use of a very small volume of cells culture medium/microbubbles (MB), but the presence of flat walls near the sonicated region that results in a more homogeneous ultrasonic pressure field, and thus, the control of the focal distance and the real exposure time. The setup presented here comprises the ability to survey the geometrical and dynamical aspects of the exposure of cells and MB to ultrasounds, if an ultrafast camera is used. Indeed, the setup thus fulfills all the requirements to apply ultrasounds conveniently, for accurate mechanistic experiments under an inverted fluorescence microscope, and it could have interesting applications in photoacoustic research.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1301
Author(s):  
Zully J. Suárez Montenegro ◽  
Gerardo Álvarez-Rivera ◽  
Jose A. Mendiola ◽  
Elena Ibáñez ◽  
Alejandro Cifuentes

This work reports the use of GC-QTOF-MS to obtain a deep characterization of terpenoid compounds recovered from olive leaves, which is one of the largest by-products generated by the olive oil industry. This work includes an innovative supercritical CO2 fractionation process based on the online coupling of supercritical fluid extraction (SFE) and dynamic adsorption/desorption for the selective enrichment of terpenoids in the different olive leaves extracts. The selectivity of different commercial adsorbents such as silica gel, zeolite, and aluminum oxide was evaluated toward the different terpene families present in olive leaves. Operating at 30 MPa and 60 °C, an adsorbent-assisted fractionation was carried out every 20 min for a total time of 120 min. For the first time, GC-QTOF-MS allowed the identification of 40 terpenoids in olive leaves. The GC-QTOF-MS results indicate that silica gel is a suitable adsorbent to partially retain polyunsaturated C10 and C15 terpenes. In addition, aluminum oxide increases C20 recoveries, whereas crystalline zeolites favor C30 terpenes recoveries. The different healthy properties that have been described for terpenoids makes the current SFE-GC-QTOF-MS process especially interesting and suitable for their revalorization.


2021 ◽  
Vol 11 (13) ◽  
pp. 5924
Author(s):  
Elisa Levi ◽  
Simona Sgarbi ◽  
Edoardo Alessio Piana

From a circular economy perspective, the acoustic characterization of steelwork by-products is a topic worth investigating, especially because little or no literature can be found on this subject. The possibility to reuse and add value to a large amount of this kind of waste material can lead to significant economic and environmental benefits. Once properly analyzed and optimized, these by-products can become a valuable alternative to conventional materials for noise control applications. The main acoustic properties of these materials can be investigated by means of a four-microphone impedance tube. Through an inverse technique, it is then possible to derive some non-acoustic properties of interest, useful to physically characterize the structure of the materials. The inverse method adopted in this paper is founded on the Johnson–Champoux–Allard model and uses a standard minimization procedure based on the difference between the sound absorption coefficients obtained experimentally and predicted by the Johnson–Champoux–Allard model. The results obtained are consistent with other literature data for similar materials. The knowledge of the physical parameters retrieved applying this technique (porosity, airflow resistivity, tortuosity, viscous and thermal characteristic length) is fundamental for the acoustic optimization of the porous materials in the case of future applications.


Sign in / Sign up

Export Citation Format

Share Document