scholarly journals Analysis of Tensile Strength, Hardness and Impact Energy of SAE1040 Steel Using Heat Treatment Processes

Author(s):  
Qadir Bakhsh Jamali ◽  
Muswar Ali Farhad Siyal ◽  
Abdul Sattar Jamali ◽  
Muhammad Sharif Jamali ◽  
Arshad Hussain ◽  
...  

A systematic study was carried out to improve the mechanical properties of medium carbon steel grade SAE 1040 by heat treatment processes. Test specimen were prepared according to ASTM standards. Test specimen were heat treated in Gas furnace at austenitization temperature of 700C to obtain fully austenite structure, soaked for 90 minutes, cooled in air and furnace, and quenched in water separately. Mechanical properties such as hardness, tensile strength, yield strength, breaking strength, Young’s Modulus, elongation and impact energy were investigated in this study. It was observed that water quenching enhances materials’ hardness, tensile strength, yield strength, breaking strength and Young’s Modulus while reducing the elongation and impact energy as compared with untreated specimen. Furnace cooling decreases materials’ hardness, tensile strength, yield strength, breaking strength, Young’s Modulus while increasing the elongation and impact energy as compared with untreated specimen. Air cooling improved the materials’ mechanical properties such as hardness, tensile strength, yield strength, breaking strength, Young’s Modulus, elongation and impact energy as compared with untreated specimen. The results of this study show that the heat treatment technique greatly influences the mechanical properties of medium carbon steel grade SAE 1040.

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 404
Author(s):  
Nur Sharmila Sharip ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Yoshito Andou ◽  
Yuki Shirosaki ◽  
...  

The major hurdle in melt-processing of ultra-high molecular weight polyethylene (UHMWPE) nanocomposite lies on the high melt viscosity of the UHMWPE, which may contribute to poor dispersion and distribution of the nanofiller. In this study, UHMWPE/cellulose nanofiber (UHMWPE/CNF) bionanocomposites were prepared by two different blending methods: (i) melt blending at 150 °C in a triple screw kneading extruder, and (ii) non-melt blending by ethanol mixing at room temperature. Results showed that melt-processing of UHMWPE without CNF (MB-UHMWPE/0) exhibited an increment in yield strength and Young’s modulus by 15% and 25%, respectively, compared to the Neat-UHMWPE. Tensile strength was however reduced by almost half. Ethanol mixed sample without CNF (EM-UHMWPE/0) on the other hand showed slight decrement in all mechanical properties tested. At 0.5% CNF inclusion, the mechanical properties of melt-blended bionanocomposites (MB-UHMWPE/0.5) were improved as compared to Neat-UHMWPE. It was also found that the yield strength, elongation at break, Young’s modulus, toughness and crystallinity of MB-UHMWPE/0.5 were higher by 28%, 61%, 47%, 45% and 11%, respectively, as compared to the ethanol mixing sample (EM-UHMWPE/0.5). Despite the reduction in tensile strength of MB-UHMWPE/0.5, the value i.e., 28.4 ± 1.0 MPa surpassed the minimum requirement of standard specification for fabricated UHMWPE in surgical implant application. Overall, melt-blending processing is more suitable for the preparation of UHMWPE/CNF bionanocomposites as exhibited by their characteristics presented herein. A better mechanical interlocking between UHMWPE and CNF at high temperature mixing with kneading was evident through FE-SEM observation, explains the higher mechanical properties of MB-UHMWPE/0.5 as compared to EM-UHMWPE/0.5.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


1993 ◽  
Vol 308 ◽  
Author(s):  
Sandrine Bec ◽  
André Tonck ◽  
Jean-Luc Loubet

ABSTRACTPyrolysis of polymer precursors (polysilazane) is a technologically and economically interesting way to produce thin ceramic coatings. However, many cracks appear and decohesion occurs during pyrolysis when the ceramic coatings (SiOCN) are thicker than 0.5 micrometers. In order to understand these cracking phenomena, the coatings are mechanically characterized by nanoindentation at different stages of the pyrolysis heat treatment.During pyrolysis, the cracking temperature is detected by in-situ optical observation. The thickness of the coatings varies during pyrolysis from 3 micrometers at the polymeric state to 1 micrometer at the ceramic state. The coatings' properties, hardness and Young's modulus are evaluated after heat treatment, taking into account the substrate's influence. A large variation of these properties occurs at the cracking temperature. Both the hardness and the Young's modulus are multiplied by a factor of 10. By analysing these results, we show that cracking is correlated with the evolution of the coatings' mechanical properties during the transformation.


2021 ◽  
Author(s):  
Yanhong Jin ◽  
Yuanyuan Jing ◽  
Wenxin Hu ◽  
Jiaxian Lin ◽  
Yu Cheng ◽  
...  

Abstract Lignin has been used as a sustainable and eco-friendly filler in composite fibers. However, lignin aggregation occurred at high lignin content, which significantly hindered the further enhancement of fiber performance. The incorporation of graphene oxide (GO) enhanced the mechanical properties of the lignin/poly(vinyl alcohol) (PVA) fibers and affected their structure. With the GO content increasing from 0 to 0.2%, the tensile strength of 5% lignin/PVA fibers increased from 491 MPa to 631 MPa, and Young's modulus increased from 5.91 GPa to 6.61 GPa. GO reinforced 30% lignin/PVA fibers also showed the same trend. The tensile strength increased from 455 MPa to 553 MPa, and Young's modulus increased from 5.39 GPa to 7 GPa. The best mechanical performance was observed in PVA fibers containing 5% lignin and 0.2% GO, which had an average tensile strength of 631 MPa and a Young’s modulus of 6.61 GPa. The toughness values of these fibers are between 9.9-15.6 J/g, and the fibrillar and ductile fracture microstructure were observed. Structure analysis of fibers showed that GO reinforced 5% lignin/PVA fibers had higher crystallinity, and evidence of hydrogen bonding among GO, lignin, and PVA in the gel fibers was revealed. Further, water resistance and swelling behavior of composite PVA fibers were studied to further evidence the structure change of composite fibers.


2020 ◽  
Author(s):  
Jackie E. Kendrick ◽  
Lauren N. Schaefer ◽  
Jenny Schauroth ◽  
Andrew F. Bell ◽  
Oliver D. Lamb ◽  
...  

Abstract. Volcanoes represent one of the most critical geological settings for hazard modelling due to their propensity to both unpredictably erupt and collapse, even in times of quiescence. Volcanoes are heterogeneous at multiple scales, from porosity which is variably distributed and frequently anisotropic to strata that are laterally discontinuous and commonly pierced by fractures and faults. Due to variable and, at times, intense stress and strain conditions during and post-emplacement, volcanic rocks span an exceptionally wide range of physical and mechanical properties. Understanding the constituent materials' attributes is key to improving the interpretation of hazards posed by the diverse array of volcanic complexes. Here, we examine the spectrum of physical and mechanical properties presented by a single dome-forming eruption at a dacitic volcano, Mount Unzen (Japan) by testing a number of isotropic and anisotropic lavas in tension and compression and using monitored acoustic emission (AE) analysis. The lava dome was erupted as a series of 13 lobes between 1991–1995, and its ongoing instability means much of the volcano and its surroundings remain within an exclusion zone today. During a field campaign in 2015, we selected 4 representative blocks as the focus of this study. The core samples from each block span range in porosity from 9.14 to 42.81 %, and permeability ranges from 1.54 × 10−14 to 2.67 × 10−10 m2 (from 1065 measurements). For a given porosity, sample permeability varies by > 2 orders of magnitude is lower for macroscopically anisotropic samples than isotropic samples of similar porosity. An additional 379 permeability measurements on planar block surfaces ranged from 1.90 × 10−15 to 2.58 × 10−12 m2, with a single block having higher standard deviation and coefficient of variation than a single core. Permeability under confined conditions showed that the lowest permeability samples, whose porosity largely comprises microfractures, are most sensitive to effective pressure. The permeability measurements highlight the importance of both scale and confinement conditions in the description of permeability. The uniaxial compressive strength (UCS) ranges from 13.48 to 47.80 MPa, and tensile strength (UTS) using the Brazilian disc method ranges from 1.30 to 3.70 MPa, with crack-dominated lavas being weaker than vesicle-dominated materials of equivalent porosity. UCS is lower in saturated conditions, whilst the impact of saturation on UTS is variable. UCS is between 6.8 and 17.3 times higher than UTS, with anisotropic samples forming each end member. The Young's modulus of dry samples ranges from 4.49 to 21.59 GPa and is systematically reduced in water-saturated tests. The interrelation of porosity, UCS, UTS and Young's modulus was modelled with good replication of the data. Acceleration of monitored acoustic emission (AE) rates during deformation was assessed by fitting Poisson point process models in a Bayesian framework. An exponential acceleration model closely replicated the tensile strength tests, whilst compressive tests tended to have relatively high early rates of AEs, suggesting failure forecast may be more accurate in tensile regimes, though with shorter warning times. The Gutenberg-Richter b-value has a negative correlation with connected porosity for both UCS and UTS tests which we attribute to different stress intensities caused by differing pore networks. b-value is higher for UTS than UCS, and typically decreases (positive Δb) during tests, with the exception of cataclastic samples in compression. Δb correlates positively with connected porosity in compression, and negatively in tension. Δb using a fixed sampling length may be a more useful metric for monitoring changes in activity at volcanoes than b-value with an arbitrary starting point. Using coda wave interferometry (CWI) we identify velocity reductions during mechanical testing in compression and tension, the magnitude of which is greater in more porous samples in UTS but independent of porosity in UCS, and which scales to both b-value and Δb. Yet, saturation obscures velocity changes caused by evolving material properties, which could mask damage accrual or source migration in water-rich environments such as volcanoes. The results of this study highlight that heterogeneity and anisotropy within a single system not only add uncertainty but also have a defining role in the channelling of fluid flow and localisation of strain that dictate a volcano's hazards and the geophysical indicators we use to interpret them.


2021 ◽  
Vol 32 (2) ◽  
pp. 87-104
Author(s):  
Pui-Voon Yap ◽  
Ming-Yeng Chan ◽  
Seong-Chun Koay

This research work highlights the mechanical properties of multi-material by fused deposition modelling (FDM). The specimens for tensile and flexural test have been printed using polycarbonate (PC) material at different combinations of printing parameters. The effects of varied printing speed, infill density and nozzle diameter on the mechanical properties of specimens have been investigated. Multi-material specimens were fabricated with acrylonitrile butadiene styrene (ABS) as the base material and PC as the reinforced material at the optimum printing parameter combination. The specimens were then subjected to mechanical testing to observe their tensile strength, Young’s modulus, percentage elongation, flexural strength and flexural modulus. The outcome of replacing half of ABS with PC to create a multi-material part has been examined. As demonstrated by the results, the optimum combination of printing parameters is 60 mm/s printing speed, 15% infill density and 0.8 mm nozzle diameter. The combination of ABS and PC materials as reinforcing material has improved the tensile strength (by 38.46%), Young’s modulus (by 23.40%), flexural strength (by 23.90%) and flexural modulus (by 37.33%) while reducing the ductility by 14.31% as compared to pure ABS. The results have been supported by data and graphs of the analysed specimens.


2018 ◽  
Vol 917 ◽  
pp. 52-56
Author(s):  
Jirapornchai Suksaeree

Recently, Thai herbs are widely used as medicine to treat some illnesses. Zingiber cassumunar Roxb., known by the Thai name “Plai”, is a popular anti-inflammatory, antispasmodic herbal body and muscle treatment. This research aimed to prepare herbal patches that incorporated the 3 g of crude Z. cassumunar oil. The herbal patches made from different polymer blends were 2 g of 3.5%w/v chitosan and 5 g of 20%w/v hydroxypropyl methylcellulose (HPMC), or 2 g of 3.5%w/v chitosan and 5 g of 20%w/v polyvinyl alcohol (PVA) using 2 g of glycerin as a plasticizer. They were prepared by mixing all ingredients in a beaker and produced by solvent casting method in hot air oven at 70±2oC. The completed herbal patches were evaluated for their mechanical properties including Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion. The thickness of blank and herbal patches was 0.263-0.282 mm and 0.269-0.275 mm, respectively. Young’s modulus, ultimate tensile strength, elongation at break, T-peel strength, and tack adhesion were 104.73-142.71 MPa, 87.92-93.28 MPa, 154.39-174.98 %, 3.43-4.88 MPa, and 5.29-7.02 MPa, respectively, for blank patches, and 116.83-147.28 MPa, 89.49-100.47 MPa, 133.78-159.27 %, 2.01-3.98 MPa, and 4.03-5.19 MPa, respectively, for herbal patches. We prepared herbal blended patches made from chitosan/PVA or chitosan/HPMC polymer matrix blends incorporating the crude Z. cassumunar oil. They had good mechanical properties that might be developed for herbal medicinal application.


2015 ◽  
Vol 776 ◽  
pp. 239-245
Author(s):  
Abdul Aziz ◽  
Maulud Hidayat ◽  
Indah Hardiyanti

The application of steel products have been widely used and various research have been developed to find a good and appropriate quality of steel and can be produced in the country without have to be imported, for example alloy steels. One of the alloy steels that have been constantly developed is Ni-Cr-Mo alloy steel with additional nickel, chromium and molybdenum which can increase hardness, tensile strength, ductility and toughness. The effect during the production process is at the heating process that causes the formation of iron oxide layer (scale) and the loss of steel weight. Therefore, the selection of heat treatment methods and techniques are required to increase the mechanical properties of steel, such as hardness, tensile strength, and toughness, with the scale is about <5% of steel weight. In this research, the heat treatment was carried out at austenisation temperature of 800°, 850°, 900°C and at holding time of 20, 40, 60 minutes, then followed by a rapid cooling (quenching) to improve the mechanical properties of hardness. This research also tested the mechanical properties of steel that consist of hardness test and impact test, and metallographic observation that consist of micro structure observation and scale thickness observation. The micro structure from heat treatment process is martensite, it is due to a rapid cooling (quenching) that rapidly change the austenite phase into martensite. The data showed the highest hardness is 588.35 HVN at 850°C of temperature and 60 minutes of holding time, 8.5 Joules of impact energy, and 91.5 μm of scale thickness. While the lowest hardness is 539.34 HVN at 800°C of temperature, 5 Joules of impact energy, and 47.81 μm of scale thickness.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xinguo Zhang ◽  
Shichuan Zhang

Cemented paste backfill containing coal gangue and fly ash (CGFACPB) is an emerging backfill technique for coal mines that allows environmentally hazardous coal gangue and fly ash to be reused in the underground goaf. Meanwhile, CGFACPB can provide an efficient ground support and reduce the surface subsidence. Due to the difference of consolidation environment between the laboratory and the field, the mechanical properties of the cemented paste backfill vary significantly. In this paper, the core specimens were collected from an underground coal mine where the CGFACPB was used for coal mining, and the mechanical properties of the collected specimens were investigated. The cores were obtained from the underground coal mine, and then the standard cylinders or discs were prepared in laboratory. The uniaxial compressive strength (UCS), Young’s modulus, and Poisson’s ratio were determined by the compression tests, and the tensile strength was achieved by the Brazilian test. Then the internal friction angle and cohesion were calculated using the improved Mohr–Coulomb strength criterion. The results showed the development of UCS can be divided into four stages, and the final long-term stable value was about 5.1 MPa. The development of Young’s modulus had similar trend. Young’s modulus had a range from 550 MPa to 750 MPa and the mean value of 675 MPa. Poisson’s ratio gradually increased with the underground curing duration and eventually approached the stable value of 0.18. The failure type of compression samples was mainly single-sided shear failure. The development of tensile strength can be divided into two stages, and the stable value of the tensile strength was about 1.05 MPa. The development of cohesion can be divided into four stages, and the stable value was about 1.75 MPa. The stable value of the internal friction angle was about 25°. This study can provide significant references for not only the long-term stability evaluation of CGFACPB in the field but also the design of optimal recipe of the cemented paste backfill (CPB).


Sign in / Sign up

Export Citation Format

Share Document