Fruit drop in cotton: some causes

2021 ◽  
pp. 36-62

Various aspects of fruit abscission in cotton have been reviewed in the past. Recent advances in this field thus permit consolidation of review of the current research. A major concern among cotton growers is heavy fruit drop, that leads to direct yield loss, which occurs at the expense of squares and young bolls. Shedding of fruiting forms in cotton is the combined consequence of plant itself like hormonal imbalance, plant nutritional status, age relation, and environmental stresses like water deficit, waterlogging, high temperature, dim light, salinity, insects and diseases. These stresses result in prominent signaling modifications like hormonal imbalance. Ethylene is claimed to play a key role in abscission apparently by activating the production of cell wall degrading enzymes such as cellulases and polygalacturonase. The premature dropping of fruiting bodies can significantly increase due to these environmental stresses, which result in severe loss in cotton yield. This article is focused on both internal and external factors that leads to fruit abscission, mechanism of fruit abscission at the physiological, hormonal, and molecular level and trying to point out the missing links on different aspects of plant hormones and environmental stresses regarding fruit abscission. This article also focused on the missing pieces of the very complicated puzzle of fruit abscission process in cotton and elucidation of the mechanism by which plants perceive abscission signals and trigger phytohormone–mediated signal transduction cascades is crucial to devise fruit shedding related breeding and transgenic approaches.

2021 ◽  
Vol 22 (16) ◽  
pp. 8830
Author(s):  
Karthika Sriskantharajah ◽  
Walid El Kayal ◽  
Davoud Torkamaneh ◽  
Murali M. Ayyanath ◽  
Praveen K. Saxena ◽  
...  

Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in ‘Honeycrisp’. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of ‘Honeycrisp’ apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.


Author(s):  
E. Loren Buhle ◽  
Pamela Rew ◽  
Ueli Aebi

While DNA-dependent RNA polymerase represents one of the key enzymes involved in transcription and ultimately in gene expression in procaryotic and eucaryotic cells, little progress has been made towards elucidation of its 3-D structure at the molecular level over the past few years. This is mainly because to date no 3-D crystals suitable for X-ray diffraction analysis have been obtained with this rather large (MW ~500 kd) multi-subunit (α2ββ'ζ). As an alternative, we have been trying to form ordered arrays of RNA polymerase from E. coli suitable for structural analysis in the electron microscope combined with image processing. Here we report about helical polymers induced from holoenzyme (α2ββ'ζ) at low ionic strength with 5-7 mM MnCl2 (see Fig. 1a). The presence of the ζ-subunit (MW 86 kd) is required to form these polymers, since the core enzyme (α2ββ') does fail to assemble into such structures under these conditions.


PRILOZI ◽  
2015 ◽  
Vol 36 (1) ◽  
pp. 5-36 ◽  
Author(s):  
Katarina Davalieva ◽  
Momir Polenakovic

Abstract Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men worldwide. The introduction of prostate specific antigen (PSA) has greatly increased the number of men diagnosed with PCa but at the same time, as a result of the low specificity, led to overdiagnosis, resulting to unnecessary biopsies and high medical cost treatments. The primary goal in PCa research today is to find a biomarker or biomarker set for clear and effecttive diagnosis of PCa as well as for distinction between aggressive and indolent cancers. Different proteomic technologies such as 2-D PAGE, 2-D DIGE, MALDI MS profiling, shotgun proteomics with label-based (ICAT, iTRAQ) and label-free (SWATH) quantification, MudPIT, CE-MS have been applied to the study of PCa in the past 15 years. Various biological samples, including tumor tissue, serum, plasma, urine, seminal plasma, prostatic secretions and prostatic-derived exosomes were analyzed with the aim of identifying diagnostic and prognostic biomarkers and developing a deeper understanding of the disease at the molecular level. This review is focused on the overall analysis of expression proteomics studies in the PCa field investigating all types of human samples in the search for diagnostics biomarkers. Emphasis is given on proteomics platforms used in biomarker discovery and characterization, explored sources for PCa biomarkers, proposed candidate biomarkers by comparative proteomics studies and the possible future clinical application of those candidate biomarkers in PCa screening and diagnosis. In addition, we review the specificity of the putative markers and existing challenges in the proteomics research of PCa.


2017 ◽  
Vol 4 (2) ◽  
Author(s):  
Ashish Mehta ◽  
Gerald Young ◽  
Alyssa Wicker ◽  
Sarah Barber ◽  
Gaurav Suri

In the past two decades, researchers have conclusively demonstrated that various emotion regulation (ER) strategies give rise to differing consequences. Such findings have prompted an examination of the internal and external factors that contribute to emotion regulation choice. Previous empirical studies modeling ER choice have been limited to Western samples. Based on knowledge of the role of culture in other choice behavior, we sought to test whether culture was a driver of ER choice. For the present studies, we compared ER choices of participants from India, to ER choices of participants from the U.S.A. Research demonstrating a correlation between religiosity and effective use of cognitive reappraisal lead us to anticipate the more religious India showing higher rates of cognitive reappraisal. Based on the incorporation of acceptance themes in Indian philosophy, as well as higher rates of fatalistic outlooks in India, we also expected to see Indian participants more frequently using an acceptance ER strategy. We further expected that difference in choice strategies would be moderated by emotional intensity of the stimuli. To test these hypotheses, we presented high and low-intensity emotion-eliciting images to both samples and recorded ER choice selections. We discovered that as hypothesized, the Indian sample was significantly more likely to use cognitive reappraisal than the U.S. sample, specifically for high intensity images. Contrary to our hypothesis, the choice rate for acceptance was indistinguishable in the Indian and U.S. samples. This research indicates that culture bears considerably on which strategies people choose to employ when regulating emotion in response to negative stimuli.


1990 ◽  
Vol 115 (3) ◽  
pp. 390-394 ◽  
Author(s):  
Richard P. Marini ◽  
Ross E. Byers ◽  
Donald L. Sowers ◽  
Rodney W. Young

Five apple (Malus domestica Borkh.) cultivars were treated with dicamba at concentrations of 0 to 200 mg·liter-1 during 3 years. Although the response varied with cultivar, dose, and year, dicamba always delayed fruit abscission. At similar concentrations, dicamba usually reduced fruit drop more than NAA, but less than fenoprop. Dicamba at 10 mg·liter-1 effectively delayed drop of `Delicious', whereas 20 to 30 mg·liter-1 was required for `Red Yorking', `Rome', `Winesap', and `Stayman'. Dicamba did not influence flesh firmness, soluble solids content, water core, or starch content at harvest or after storage. Chemical names used: naphthaleneacetic acid (NAA); 2-(2,4,5-trichlorophenoxy)propionic acid (fenoprop); 3,6dichloro-2-methoxybenzoic acid (dicamba).


2006 ◽  
Vol 361 (1473) ◽  
pp. 1565-1574 ◽  
Author(s):  
Marie T Filbin

In the past decade there has been an explosion in our understanding, at the molecular level, of why axons in the adult, mammalian central nervous system (CNS) do not spontaneously regenerate while their younger counterparts do. Now a number of inhibitors of axonal regeneration have been described, some of the receptors they interact with to transduce the inhibitory signal are known, as are some of the steps in the signal transduction pathway that is responsible for inhibition. In addition, developmental changes in the environment and in the neurons themselves are also now better understood. This knowledge in turn reveals novel, putative sites for drug development and therapeutic intervention after injury to the brain and spinal cord. The challenge now is to determine which of these putative treatments are the most effective and if they would be better applied in combination rather than alone. In this review I will summarize what we have learnt about these molecules and how they signal. Importantly, I will also describe approches that have been shown to block inhibitors and encourage regeneration in vivo . I will also speculate on what the differences are between the neonatal and adult CNS that allow the former to regenerate and the latter not to.


2020 ◽  
Author(s):  
Candice Chapouly ◽  
Pierre-Louis Hollier ◽  
Sarah Guimbal ◽  
Lauriane Cornuault ◽  
Alain-Pierre Gadeau ◽  
...  

AbstractEvidences accumulated within the past decades, identified Hedgehog (Hh) signaling as a new regulator of micro-vessel integrity. More specifically, we recently identified Desert Hedgehog (Dhh) as a downstream effector of Klf2 in endothelial cells (ECs).ObjectiveThe purpose of this study is to investigate whether Hh co-receptors Gas1 and Cdon may be used as therapeutic targets to modulate Dhh signaling in ECs.Methods and resultsWe demonstrated that both Gas1 and Cdon are expressed in adult ECs and relied on either siRNAs or EC specific conditional KO mice to investigate their role. We found that Gas1 deficiency mainly photocopies Dhh deficiency especially by inducing VCAM-1 and ICAM-1 overexpression while Cdon deficiency has opposite effects by promoting endothelial junction integrity. At a molecular level, Cdon prevents Dhh binding to Ptch1 and thus acts a decoy receptor for Dhh, while Gas1 promotes Dhh binding to Smo and as a result potentiates Dhh effects. Since Cdon is overexpressed in ECs treated by inflammatory cytokines including TNFα and Il1β, we then tested whether Cdon inhibition would promote endothelium integrity in acute inflammatory conditions and found that both fibrinogen and IgG extravasation were decreased in association with an increased Cdh5 expression in the brain cortex of EC specific Cdon KO mice administered locally with Il1β.ConclusionAltogether these results demonstrate that Gas1 is a positive regulator of Dhh in ECs while Cdon is a negative regulator. Interestingly Cdon blocking molecules may then be used to promote endothelium integrity at least in inflammatory conditions.


Author(s):  
Elena Aikawa ◽  
Mark C. Blaser

Cardiovascular calcification is an insidious form of ectopic tissue mineralization that presents as a frequent comorbidity of atherosclerosis, aortic valve stenosis, diabetes, renal failure, and chronic inflammation. Calcification of the vasculature and heart valves contributes to mortality in these diseases. An inability to clinically image or detect early microcalcification coupled with an utter lack of pharmaceutical therapies capable of inhibiting or regressing entrenched and detectable macrocalcification has led to a prominent and deadly gap in care for a growing portion of our rapidly aging population. Recognition of this mounting concern has arisen over the past decade and led to a series of revolutionary works that has begun to pull back the curtain on the pathogenesis, mechanistic basis, and causative drivers of cardiovascular calcification. Central to this progress is the discovery that calcifying extracellular vesicles act as active precursors of cardiovascular microcalcification in diverse vascular beds. More recently, the omics revolution has resulted in the collection and quantification of vast amounts of molecular-level data. As the field has become poised to leverage these resources for drug discovery, new means of deriving relevant biological insights from these rich and complex datasets have come into focus through the careful application of systems biology and network medicine approaches. As we look onward toward the next decade, we envision a growing need to standardize approaches to study this complex and multifaceted clinical problem and expect that a push to translate mechanistic findings into therapeutics will begin to finally provide relief for those impacted by this disease.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 151
Author(s):  
Minglei Zhao ◽  
Jianguo Li

Abscission in plants is an active and highly coordinated physiological process in which organs abscise from the plant body at the abscission zone (AZ) in responding to either developmental or environmental cues. Litchi (Litchi chinensis Sonn.) is an important economic fruit crop widely grown in Southeast Asia particularly in South China. However, the excessive fruit drop during fruit development is a major limiting factor for litchi production. Thus, it is an important agricultural concern to understand the mechanisms underlying the fruit abscission in litchi. Here, we present a review focusing on the molecular events involved in the fruitlet abscission. We also highlight the recent advances on genes specifically associated with fruit abscission and perspectives for future research.


2018 ◽  
Vol 56 (1) ◽  
pp. 67-87 ◽  
Author(s):  
Beat Keller ◽  
Thomas Wicker ◽  
Simon G. Krattinger

The gene pool of wheat and its wild and domesticated relatives contains a plethora of resistance genes that can be exploited to make wheat more resilient to pathogens. Only a few of these genes have been isolated and studied at the molecular level. In recent years, we have seen a shift from classical breeding to genomics-assisted breeding, which makes use of the enormous advancements in DNA sequencing and high-throughput molecular marker technologies for wheat improvement. These genomic advancements have the potential to transform wheat breeding in the near future and to significantly increase the speed and precision at which new cultivars can be bred. This review highlights the genomic improvements that have been made in wheat and its pathogens over the past years and discusses their implications for disease-resistance breeding.


Sign in / Sign up

Export Citation Format

Share Document