scholarly journals Effect of colour of light on the opening of inflorescence buds and post-harvest longevity of pot chrysanthemums (Chrysanthemum × grandiflorum (Ramat.) Kitam)

2012 ◽  
Vol 64 (3) ◽  
pp. 13-18 ◽  
Author(s):  
Marek Jerzy ◽  
Piotr Zakrzewski ◽  
Anita Schroeter-Zakrzewska

The pot cultivar of <i>Chrysanthemum</i> × <i>grandiflorum</i> 'Leticia Time Yellow' was cultivated and stored in a growth room under fluorescent light of white, blue, green, yellow and red colour. Quantum irradiance was 30 μmol · m<sup>-2</sup> × s<sup>-1</sup>. The colour of light exerted a significant influence on the opening of closed inflorescence buds and on post-harvest longevity of pot chrysanthemums grown earlier in an unheated plastic tunnel. Under florescent lamps emitting blue light at a wavelength of 400-580 nm, inflorescence buds opened and coloured the earliest. The number of developed flower heads was the greatest under blue and white light. Flower heads developing in blue light were bigger than flower heads developing in white and green light. In red light at a wavelength of 600-700 nm, plants flowered latest and they produced the smallest flower heads. Post-harvest longevity was preserved longest in chrysanthemums kept under blue, white and green light. In red and yellow light, the flowers were overblown earliest.

2021 ◽  
Vol 4 (1) ◽  
pp. 73-78
Author(s):  
Idrus Umar

The purpose of the study was to determine the effect of giving different colors of light on carcass percentage and carcass weight in Kampung Super chickens. The research design used was a completely randomized design (CRD). A total of 80 Kampung Super chickens were used in this study. The research treatments were P1 (white light color), P2 (yellow light color), P3 (green light color), P4 (red light color), P5 (blue light color). The results of the study of the highest carcass presentation were found in the treatment that was given red light with an average value of 62.455%. The highest carcass weight was found in the same treatment, which was given a red light with an average value of 674.75 g/head. The provision of different light colors did not have a significant effect on the carcass percentage and carcass weight of the finisher phase super free-range chicken. 


2021 ◽  
Vol 8 ◽  
Author(s):  
Peian Zhang ◽  
Suwen Lu ◽  
Zhongjie Liu ◽  
Ting Zheng ◽  
Tianyu Dong ◽  
...  

Different light qualities have various impacts on the formation of fruit quality. The present study explored the influence of different visible light spectra (red, green, blue, and white) on the formation of quality traits and their metabolic pathways in grape berries. We found that blue light and red light had different effects on the berries. Compared with white light, blue light significantly increased the anthocyanins (malvidin-3-O-glucoside and peonidin-3-O-glucoside), volatile substances (alcohols and phenols), and soluble sugars (glucose and fructose), reduced the organic acids (citric acid and malic acid), whereas red light achieved the opposite effect. Transcriptomics and metabolomics analyses revealed that 2707, 2547, 2145, and 2583 differentially expressed genes (DEGs) and (221, 19), (254, 22), (189, 17), and (234, 80) significantly changed metabolites (SCMs) were filtered in the dark vs. blue light, green light, red light, and white light, respectively. According to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, most of the DEGs identified were involved in photosynthesis and biosynthesis of flavonoids and flavonols. Using weighted gene co-expression network analysis (WGCNA) of 23410 highly expressed genes, two modules significantly related to anthocyanins and soluble sugars were screened out. The anthocyanins accumulation is significantly associated with increased expression of transcription factors (VvHY5, VvMYB90, VvMYB86) and anthocyanin structural genes (VvC4H, Vv4CL, VvCHS3, VvCHI1, VvCHI2, VvDFR), while significantly negatively correlated with VvPIF4. VvISA1, VvISA2, VvAMY1, VvCWINV, VvβGLU12, and VvFK12 were all related to starch and sucrose metabolism. These findings help elucidate the characteristics of different light qualities on the formation of plant traits and can inform the use of supplemental light in the field and after harvest to improve the overall quality of fruit.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 440
Author(s):  
Youxiong Zheng ◽  
Yan Tang ◽  
Jianwei Yu ◽  
Lan Xie ◽  
Huiyou Dong ◽  
...  

Building novel functional nanomaterials with a polymer is one of the most dynamic research fields at present. Here, three amphiphilic block copolymers of 8-hydroxyquinoline derivative motifs (MQ) with excellent coordination function were synthesized by Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT) polymerization. The coordination micelles were prepared through the self-assembly process, which the MQ motifs were dispersed in the hydrophobic polystyrene (PSt) blocks and hydrophilic Poly(N-isopropylacrylamide (PNIPAM)) blocks, respectively. The dual-emission micelles including the intrinsic red light emission of quantum dots (QDs) and the coordination green light emission of Zn2+-MQ complexes were built by introducing the CdSe/ZnS and CdTe/ZnS QDs in the core and shell precisely in the coordination micelles through the coordination-driven self-assembly process. Furthermore, based on the principle of three primary colors that produce white light emission, vinyl carbazole units (Polyvinyl Carbazole, PVK) with blue light emission were introduced into the hydrophilic PNIPAM blocks to construct the white light micelles that possess special multi-emission properties in which the intrinsic red light emission of QDs, the coordination green light of Zn2+-MQ complexes, and the blue light emission of PVK were synergized. The dual and multi-emission hybrid micelles have great application prospects in ratiometric fluorescent probes and biomarkers.


2021 ◽  
Author(s):  
Congying Zhang Zhang ◽  
Ruibing Peng ◽  
Yi Wu ◽  
Zhihong Wu ◽  
Zuhao Zhang ◽  
...  

Abstract Background Marine diatoms were considered as a promising alternative to microbial resources for the development of biofuels, food additives, medicines and chemical materials. Light of wavelength is a principal element that can easily be controlled in microalgal scale-culture and influence the growth, pigment composition, and lipids accumulation of algal cells. With the increasing implementation of light-emitting diodes (LEDs) in microalgal production systems (photobioreactors), a measure of light quality controlled by LED could be suitable to improve microalgal yields. Results In this study, Cylindrotheca Closterium, a widely used diatom, influenced by five light quality (white, red, blue, green and yellow light) was tested for its effects of growth rates, chlorophylls contents, total lipids contents and fatty acids compositions. The growth and chlorophyll experiments also showed that the green and yellow light significantly improve the growth rates and chlorophylls contents than other groups (P < 0.05). The group white light showed the greatest increases in total lipid contents of C. closterium (P < 0.05). The group blue light had the highest polyunsaturated fatty acids (PUFAs) proportion (P < 0.05), while the group white showed the lowest PUFAs and the highest saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) proportions (P < 0.05). The proportions of SFAs and MUFAs were negatively correlated with growth, chlorophylls, and lipids. And the proportion of PUFAs and n-3 PUFA was positively correlated with growth chlorophylls, and lipids. Principal component analysis showed that the fatty acid composition differed among light quality groups. Conclusion In summary, green light and yellow light were conductive to boosting the growth and chlorophylls accumulation of C. closterium. White light increased total lipid yields, while blue light was superior in increasing the production of unsaturated fatty acids, especially on the timnodonic acid (EPA). The application of two-step methods to increase the production of biomass and fatty acids is an effective measure for the cultivation of C. closterium; green light is used to increase the growth, followed by white light cultivation to improve total lipids or blue light to enhance the proportion of PUFAs of C. closterium.


2012 ◽  
Vol 6 (1) ◽  
pp. 47-49
Author(s):  
Grace Loupatty

By learning and researching the wave-length of light and its propagation we can make an observation of the function and effectiveness light as a stimulation in fishing.The purposes of the observation are: to know how the color of light lamp influences to the result of fishing; to observe how the depth of location for fishing influences the reduction of light intensity; to know what is the relation between parameter condition/ atmosphere (salinity, temperature and transparency of the water) with the result of fishing.The observation is applied with a direct observation method in water of Batu Dua- Ambon Island.The total result of fishing is 57.2 kilograms with applied for us different light lamp (red, yellow, green and blue). Each color applied has the result: the red light lamps got amount of 4.5 kg; the yellow light lamps got amount of 15,1 kg ; the green light lamps got amount 17.4 kg; and the blue light lamps got amount of 20.2 kg.Data analysis statistically using an analysis of variance system which indicates that the stimulation light lamp influences to the result of fishing.Result of the statistical observation shows that parameter conditions/ atmosphere in the water, such as salinity. temperature, transparency of the water, such as: salinity, temperature, transparency of the water do not influence to the result of fishing.


2020 ◽  
Vol 25 (1) ◽  
pp. 113-148 ◽  
Author(s):  
Martha Lucia Ortiz-Moreno ◽  
Jaleydi Cárdenas-Poblador ◽  
Julián Agredo ◽  
Laura Vanessa Solarte-Murillo

Mathematical models provide information about population dynamics under different conditions. In the study, four models were evaluated and employed to describe the growth kinetics of Nostoc ellipsosporum with different light wavelengths: Baranyi-Roberts, Modified Gompertz, Modified Logistic, and Richards. N. ellipsosporum was grown in BG-11 liquid medium for 9 days, using 12 hours of photoperiod and the following treatments: white light (400-800 nm), red light (650-800 nm), yellow light (550-580 nm) and blue light (460-480 nm). Each experiment was performed in triplicate. The optical density (OD) was measured on days 1, 3, 5, 7 and 9, using a spectrophotometer at 650 nm. The maximum cell growth was obtained under white light (OD650 : 0.090 ± 0.008), followed by the yellow light (OD650 :0.057 ± 0.004). Conversely, blue light showed a marked inhibitory effect on the growth of N. ellipsosporum (OD650 : 0.009 ± 0.001). The results revealed that the Baranyi-Roberts model had a better fit with the experimental data from N. ellipsosporum growth in all four treatments. The findings from this modeling study could be used in several biotechnological applications that require the productionof N. ellipsosporum and its bioproducts.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1211
Author(s):  
Barbara Frąszczak ◽  
Monika Kula-Maximenko

The spectrum of light significantly influences the growth of plants cultivated in closed systems. Five lettuce cultivars with different leaf colours were grown under white light (W, 170 μmol m−2 s−1) and under white light with the addition of red (W + R) or blue light (W + B) (230 μmol m−2 s−1). The plants were grown until they reached the seedling phase (30 days). Each cultivar reacted differently to the light spectrum applied. The red-leaved cultivar exhibited the strongest plasticity in response to the spectrum. The blue light stimulated the growth of the leaf surface in all the plants. The red light negatively influenced the length of leaves in the cultivars, but it positively affected their number in red and dark-green lettuce. It also increased the relative chlorophyll content and fresh weight gain in the cultivars containing anthocyanins. When the cultivars were grown under white light, they had longer leaves and higher value of the leaf shape index. The light-green cultivars had a greater fresh weight. Both the addition of blue and red light significantly increased the relative chlorophyll content in the dark-green cultivar. The spectrum enhanced with blue light had positive influence on most of the parameters under analysis in butter lettuce cultivars. These cultivars were also characterised by the highest absorbance of blue light.


RSC Advances ◽  
2015 ◽  
Vol 5 (6) ◽  
pp. 4707-4715 ◽  
Author(s):  
Qiwei Zhang ◽  
Haiqin Sun ◽  
Tao Kuang ◽  
Ruiguang Xing ◽  
Xihong Hao

Materials emitting red light (∼611 nm) under excitation with blue light (440–470 nm) are highly desired for fabricating high-performance white light-emitting diodes (LEDs).


2020 ◽  
Author(s):  
Shengyu Liu

To investigate the effect of post-harvest light irradiation on the accumulation of flavonoids and limonoids, harvestedNewhall navel oranges were continuously exposed to light-emitting diode (LED) and ultraviolet (UV) light irradiationfor 6 days, and the composition and content of flavonoids and limonoids in the segments were determined usingUPLC-qTOF-MS at 0, 6, and 15 days after harvest. In total, six polymethoxylated flavonoids (PMFs), fiveflavoneO/C-glycosides, seven flavanone-O-glycosides, and three limonoids were identified in the segments. Theaccumulation of these components was altered by light irradiation. Red and blue light resulted in higher levels ofPMFs during exposure periods. The accumulation of PMFs was also significantly induced after white light, UVBand UVC irradiation were removed. Red and UVC irradiation induced the accumulation of flavone and flavanoneglycosides throughout the entire experimental period. Single light induced limonoid accumulation during exposureperiods, but limonoid levels decreased significantly when irradiation was removed. Principal component analysisshowed a clear correlation between PMFs and white light, between flavonoid glycosides and red light and UVC,and between limonoids and UVC. These results suggest that the accumulation of flavonoids and limonoids in citrusis regulated by light irradiation. White light, red light and UVC irradiation might be a good potential method forimproving the nutrition and flavor quality of post-harvest citrus.


2017 ◽  
Vol 69 (1) ◽  
pp. 93-101
Author(s):  
Zexiong Chen ◽  
Juan Lou

Light is the source of energy for plants. Light wavelengths, densities and irradiation periods act as signals directing morphological and physiological characteristics during plant growth and development. To evaluate the effects of light wavelengths on tomato growth and development, Solanum lycopersicum (cv. micro-Tom) seedlings were exposed to different light-quality environments, including white light and red light supplemented with blue light (at ratios of 3:1 and 8;1, respectively). Tomatoes grown under red light supplemented with blue light displayed significantly shorter stem length, a higher number of flower buds and rate of fruit set, but an extremely late flowering compared to white-light-grown plants. To illustrate the mechanism underlying the inhibition of stem growth and floral transition mediated by red/blue light, 10 trehalose-6-phosphate synthase (TPS) genes were identified in tomato, and bioinformatics analysis was performed. qRT-PCR analysis showed that SlTPSs were expressed widely throughout plant development and SlTPS1 was expressed at extremely high levels in stems and buds. Further analysis of several flowering-associated genes and microRNAs showed that the expressions of SlTPS1, SlFT and miR172 were significantly downregulated in tomato grown under red and blue light compared with those grown under white light, whereas miR156 transcript levels were increased. A regulatory model underlying vegetative growth and floral transition regulated by light qualities is presented. Our data provide evidence that light quality strongly affects plant growth and phase transition, most likely via the TPS1-T6P signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document