scholarly journals The antioxidant roles of L-carnitine and N-acetyl cysteine against oxidative stress on human sperm functional parameters during vitrification

2021 ◽  
Vol 48 (4) ◽  
pp. 316-321
Author(s):  
Fatemeh Ghorbani ◽  
Zohreh Nasiri ◽  
Yeganeh Koohestanidehaghi ◽  
Keivan Lorian

Objective: Amino acids can protect sperm structure in cryopreservation due to their antioxidant properties. Therefore, the present study aimed to investigate the protective effect of L-carnitine (LC) and N-acetyl cysteine (NAC) on motility parameters, plasma membrane integrity (PMI), mitochondrial membrane potential (MMP), DNA damage, and human sperm intracellular reactive oxygen species (ROS) during vitrification. Methods: Twenty normal human sperm samples were examined. Each sample was divided into six equal groups: LC (1 and 10 mM), NAC (5 and 10 mM), and cryopreserved and fresh control groups. Results: The groups treated with LC and NAC showed favorable findings in terms of motility parameters, DNA damage, and MMP. Significantly higher levels of intracellular ROS were observed in all cryopreserved groups than in the fresh group (p≤0.05). The presence of LC and NAC at both concentrations caused an increase in PMI, MMP, and progressive motility parameters, as well as a significant reduction in intracellular ROS compared to the control group (p≤0.05). The concentrations of the amino acids did not show any significant effect.Conclusion: LAC and NAC are promising as potential additives in sperm cryopreservation.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jiahao Zou ◽  
Lixuan Wei ◽  
Dexian Li ◽  
Yongtao Zhang ◽  
Guang Wang ◽  
...  

In the process of cryopreservation of dairy goat semen, it will face many threats such as oxidative damage, which will affect the motility and plasma membrane function of sperm. As an endogenous antioxidant in animals, glutathione (GSH) can significantly improve the quality of thawed sperm when added to the frozen diluent of semen of pigs and cattle. In this study, different concentration gradients of GSH [0 mmol/L (control), 1, 2, 3, 4 mmol/L] were added to the frozen diluent of Guanzhong dairy goat semen. By detecting the sperm motility parameters, acrosome intact rate and plasma membrane intact rate after thawing, the effect of GSH on the cryopreservation of dairy goat semen was explored. Sperm motility parameters were measured with the computer-aided sperm analysis (CASA) system (total power, TM; forward power, PM; linearity, LIN; average path speed, VAP; straight line speed, VSL; curve speed, VCL; beat cross frequency, BCF). The sperm acrosome integrity rate after thawing was detected by a specific fluorescent probe (isothiocyanate-labeled peanut agglutinin, FITC-PNA), and the sperm plasma membrane integrity rate after thawing was detected by the hypotonic sperm swelling (HOST) method. Reactive oxygen species (ROS) kit, malondialdehyde (MDA) kit, superoxide dismutase (SOD) kit, glutathione peroxidase (GSH-PX) kit were used to detect various antioxidant indicators of thawed sperm. in vitro fertilization experiment was used to verify the effect of adding glutathione on sperm fertilization and embryo development. The results showed that when the concentration of glutathione was 2 mmol/l, the sperm viability, plasma membrane intact rate, and acrosome intact rate were the highest after thawing, reaching 62.14, 37.62, and 70.87% respectively, and they were all significantly higher. In terms of antioxidant indexes; the values of SOD and GSH-PX were 212.60 U/ml and 125.04 U/L, respectively, which were significantly higher than those of the control group; The values of ROS and MDA were 363.05 U/ml and 7.02 nmol/L, respectively, which were significantly lower than the control group. The addition of 2 mmol/L glutathione significantly improves the fertilization ability of sperm. In short, adding 2 mmol/l glutathione to the semen diluent can improve the quality of frozen Guanzhong dairy goat sperm.


2018 ◽  
Vol 8 (1) ◽  
pp. 1-6 ◽  
Author(s):  
F. Karahan ◽  
S. Dede ◽  
E. Ceylan

Objective: Lycopene is a carotenoid with anti-inflammatory and antioxidant properties. The aim of this study was to determine the effects of lycopene on oxidative DNA damage levels in experimental diabetic rats. Subjects and Methods: Four experimental groups, each consisting of 7 rats, were prepared as Controls, Diabetes (D), Lycopene-treated diabetes (DL) and Lycopene (L). STZ (45 mg/kg) was administered to the diabetic groups intraperitoneally in a single dose. Lycopene was administered to the L and DL groups (10 mg lycopene/kg/day). The test procedure continued for four weeks. To understand the occurrence of diabetic conditions, serum glucose and HbA1c% in the whole blood were determined. The 8-OHdG levels, a marker of oxidative DNA damage, were determined in the blood serum. Results: Blood glucose and HbA1c% were higher in the DL group than in the control group and L group (p <0.05) and lower in the D group (p <0.05). 8-OHdG levels were higher in D group than the other groups (p <0.05) while 8-OHdG levels in DL group were lower than D group (p <0.05) and approximated to the control group. Conclusion: It can be suggested that lycopene may be described as a protective agent to prevent oxidative DNA damage originated from diabetes.


Author(s):  
Sisca Sisca ◽  
Luluk Yunaini ◽  
Dwi Ari Pujianto

Background<br />Progesterone (P4) is known as a female hormone affecting oocyte maturation and developing uterine wall. A proteomic study identified several receptors including P4 receptors on human sperm. The role of P4 in human sperm cells remains unknown as to whether P4 has non-genomic effects on human sperm. The present study aims to determine the effect of progesterone (P4) on the hyperactivated motility and membrane integrity of human sperm cells.<br /><br />Methods<br />Semen from normal individuals was obtained from donors. The semen was washed by gradient density centrifugation. P4 was added to each semen sample to final concentrations of 0 (control), 250, 500, 750 and 1000 ng/mL. After the sample treatment was completed, the sperm membrane integrity was assessed with the hypoosmotic swelling test (sodium citrate dihydrate and D-fructose) and the hyperactivated sperm motility parameter was determined with the Computer Assisted Sperm Analyzer [CASA] (Hamilton Thorne, IVOS II, USA). The percentage was then compared between the treatment groups and the control group. The percentage differences were analyzed with the Sigmastat version 2.0 statistical program.<br /><br />Results<br />Administration of P4 increased sperm hyperactivated motility when compared with the control group at a concentration of 500 ng/mL, but the increase was statistically not signicant (p&gt;0.05). In contrast, P4 decreased sperm membrane integrity significantly (p=0.042). And the mean of plasma membrane integrity in all groups was subnormal hypoosmotic swelling test score. <br /><br />Conclusion<br />Progesterone administration tends to increase sperm hyperactivated motility. The integrity of plasma sperm membrane was affected by progesterone.


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 161
Author(s):  
Natalia Nowacka-Jechalke ◽  
Renata Nowak ◽  
Marta Kinga Lemieszek ◽  
Wojciech Rzeski ◽  
Urszula Gawlik-Dziki ◽  
...  

The aim of the present study was to evaluate in vitro the beneficial potential of crude polysaccharides from S. crispa (CPS) in one of the most common cancer types—colon cancer. The determination of the chemical composition of CPS has revealed that it contains mostly carbohydrates, while proteins or phenolics are present only in trace amounts. 1H NMR and GC–MS methods were used for the structural analysis of CPS. Biological activity including anticancer, anti-inflammatory and antioxidant properties of CPS was investigated. CPS was found to be non-toxic to normal human colon epithelial CCD841 CoN cells. Simultaneously, they destroyed membrane integrity as well as inhibited the proliferation of human colon cancer cell lines: Caco-2, LS180 and HT-29. Antioxidant activity was determined by various methods and revealed the moderate potential of CPS. The enzymatic assays revealed no influence of CPS on xanthine oxidase and the inhibition of catalase activity. Moreover, pro-inflammatory enzymes such as cyclooxygenase-2 or lipooxygenase were inhibited by CPS. Therefore, it may be suggested that S. crispa is a valuable part of the regular human diet, which may contribute to a reduction in the risk of colon cancer, and possess promising activities encouraging further studies regarding its potential use as chemopreventive and therapeutic agent in more invasive stages of this type of cancer.


2020 ◽  
Vol 22 (9) ◽  
pp. 657-662 ◽  
Author(s):  
Mustafa Celik ◽  
Alper Şen ◽  
İsmail Koyuncu ◽  
Ataman Gönel

Aim and Objective:: To determine the mechanisms present in the etiopathogenesis of nasal polyposis. It is not clear whether amino acids contribute in a causal way to the development of the disease. Therefore, the aim of this study was to determine the plasma-free amino acid profile in patients with nasal polyposis and to compare the results with a healthy control group. Materials and Methods:: This was a prospective controlled study that took place in the Otolaryngology Department at the Harran University Faculty of Medicine between April 2017 and April 2018. Plasmafree amino acid profile levels were studied in serum samples taken from a patient group and a healthy control group. Patients who were diagnosed with bilateral diffuse nasal polyposis and were scheduled for surgical interventions were included in this study. Individuals whose age, gender, and body mass index values were compatible with that of the patient group and who did not have any health problems were included in the control group. All the participants whose levels of plasma-free amino acid were thought to be affected by one or more of the following factors were excluded from the study: smoking and alcohol use, allergic rhinitis presence, the presence of acute or chronic sinusitis, a history of endoscopic sinus surgery, unilateral nasal masses, a history of chronic drug use, systemic or topical steroid use in the last three months for any reason, and liver, kidney, hematological, cardiovascular, metabolic, neurological, or psychiatric disorders or malignancies. Results: In patients with nasal polyposis, 3-methyl histidine (3-MHIS: nasal polyposis group (ng) = 3.22 (1.92 – 6.07); control group (cg) = 1.21 (0.77 – 1.68); p = 0.001); arginine (arg: ng = 98.95 (70.81 – 117.75); cg = 75.10 (54.49 – 79.88); p = 0.005); asparagine (asn: ng = 79.84 (57.50 – 101.44); cg = 60.66 (46.39 – 74.62); p = 0.021); citrulline (cit: ng = 51.83 (43.81 – 59.78); cg = 38.33 (27.81 – 53.73); p = 0.038); cystine (cys: ng = 4.29 (2.43 – 6.66); cg = 2.41 (1.51 – 4.16); p = 0.019); glutamic acid (glu: ng = 234.86 (128.75 – 286.66); cg = 152.37 (122.51 – 188.34); p = 0.045); histidine (his: ng = 94.19 (79.34 – 113.99); cg = 74.80 (62.76 – 98.91); p = 0.018); lysine (lys: ng = 297.22 (206.55 – 371.25); cg = 179.50 (151.58 – 238.02); p = 0.001); ornithine (ng = 160.62 (128.36 – 189.32); cg = 115.91 (97.03 – 159.91); p = 0.019); serine (ser: ng = 195.15 (151.58 – 253.07); cg = 83.07 (67.44 – 92.44); p = 0.001); taurine (tau: ng = 74.69 (47.00 – 112.13); cg = 53.14 (33.57 – 67.31); p = 0.006); tryptophan (trp: ng = 52.31 (33.81 – 80.11); cg = 34.44 (25.94 – 43.07); p = 0.005), homocitrulline (ng = 1.75 (1.27 – 2.59); cg = 0.00 (0.00 – 0.53); p = 0.001); norvaline (ng = 6.90 (5.61 – 9.18); cg = 4.93 (3.74 – 7.13); p = 0.021); argininosuccinic acid (ng = 14.33 (10.06 – 25.65); cg = 12.22 (5.77 – 16.87) p = 0.046); and plasma concentrations were significantly higher than in the healthy control group (p <0.05). However, the gamma-aminobutyric acid (gaba: ng = 0.16 (0.10 – 0.24); cg = 0.21 (0.19 – 0.29); p = 0.010) plasma concentration was significantly lower in the nasal polyposis group than in the healthy control group. Conclusion: In this study, plasma levels of 15 free amino acids were significantly higher in the nasal polyposis group than in the healthy control group. A plasma level of 1 free amino acid was found to be significantly lower in the nasal polyposis group compared to the healthy control group. Therefore, it is important to determine the possibility of using the information obtained to prevent the recurrence of the condition and to develop effective treatment strategies. This study may be a milestone for studies of this subject. However, this study needs to be confirmed by further studies conducted in a larger series.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 132-133
Author(s):  
Genxiang Mao ◽  
Xiaogang Xu

Abstract Exosomes are one type of small-cell extracellular vesicles (sEVs), which together with the senescence-associated secretory phenotype (SASP) mainly constitute the senescent microenvironment and perform remotely intercellular communication. However, the effects of senescence on exosomes biosynthesis and secretion and its role in the cell senescence are still obscure. Here, we used human fetal lung diploid fibroblasts (2BS) passaged to PD50 to construct the senescent cells model in vitro, which were confirmed by senescence-related β-galactosidase staining, cell cycle distribution, and intracellular ROS levels. PD30 2BS was used as young control. We evaluated the exosomes derived from senescence and young control group respectively and investigated their regulation of senescence. We found that exosomes released from 2BS had typical sizes and cup-shapes morphology and their surface presented typical exosome-associated proteins. The number of exosomes secreted by senescent cells was significantly higher than that of young cells. Moreover, exosomal markers Alix, TSG101, and CD63 were all more expressed than young cells. Furthermore, we treat young cells with exosomes secreted by senescent cells, which can induce senescence-like changes in young cells, including increased SA-β-Gal activity, up-regulated p16 protein expression, and activation of the Notch signaling pathway. The above results imply that exosomes derived from senescent cells can promote cell senescence. The findings expand the current knowledge on exosomes-mediated aging and provide a novel understanding of the relationship between SASP and senescence. This study is supported by National Natural Science Foundation of China (No. 81771520 and 31702144).


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Gopal Keerthipriya ◽  
Nesamani Ravikumar ◽  
Sekar Mahalaxmi

Abstract Introduction Bacterial adherence to restorative materials such as composite resin is one of the aetiology of secondary caries. This study evaluated the antibacterial efficacy of fifth generation bonding agent (BA) modified with nisin, against Streptococcus mutans based on its growth, adherence and membrane integrity. Methods Adhesive eluents of the experimental bonding agents were obtained using 250 μl Brain Heart Infusion (BHI) broth and the groups were control (BA with 0% Nisin), bonding agent with 1 wt% (NBA 1) and 5 wt% nisin (NBA 5). To this, 10 μl S. mutans culture was added and incubated at 37 °C. Bacterial growth was estimated by changes in optical density using spectrophotometer every 20 min for 2 h. The results were statistically analysed using one way ANOVA followed by Tukey Post Hoc test. For adherence and membrane integrity test, 10 μl of BHI supplemented with 1% sucrose and 50 μl of bacterial suspension were inoculated onto the cured specimens, and incubated for 4 h. After rinsing, 1 ml of Live/Dead BacLight bacterial viability stain was added and incubated in the dark for 15 min and observed under confocal laser scanning microscope (CLSM) for intact (green/live) and damaged (red/dead) bacterial membranes. Results Mean optical density was significantly higher in control group at all time intervals with maximum value at 2 h (0.83 ± 0.008), while there was a concentration dependant reduction in bacterial growth with the NBA groups (0.50 ± 0.007). Correspondingly, the NBA groups showed higher amount of dead than live bacteria, while live bacteria were predominant in the control group. Significance Addition of an antibacterial agent nisin in dentin bonding agent may render the resin dentin interface more resistant to bacterial penetration, and adherence of cariogenic bacteria like S. mutans.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isela Álvarez-González ◽  
Scarlett Camacho-Cantera ◽  
Patricia Gómez-González ◽  
Michael J. Rendón Barrón ◽  
José A. Morales-González ◽  
...  

AbstractWe evaluated the duloxetine DNA damaging capacity utilizing the comet assay applied to mouse brain and liver cells, as well as its DNA, lipid, protein, and nitric oxide oxidative potential in the same cells. A kinetic time/dose strategy showed the effect of 2, 20, and 200 mg/kg of the drug administered intraperitoneally once in comparison with a control and a methyl methanesulfonate group. Each parameter was evaluated at 3, 9, 15, and 21 h postadministration in five mice per group, except for the DNA oxidation that was examined only at 9 h postadministration. Results showed a significant DNA damage mainly at 9 h postexposure in both organs. In the brain, with 20 and 200 mg/kg we found 50 and 80% increase over the control group (p ≤ 0.05), in the liver, the increase of 2, 20, and 200 mg/kg of duloxetine was 50, 80, and 135% in comparison with the control level (p ≤ 0.05). DNA, lipid, protein and nitric oxide oxidation increase was also observed in both organs. Our data established the DNA damaging capacity of duloxetine even with a dose from the therapeutic range (2 mg/kg), and suggest that this effect can be related with its oxidative potential.


2021 ◽  
Vol 11 (11) ◽  
pp. 5112
Author(s):  
Julia Vega ◽  
Geniane Schneider ◽  
Bruna R. Moreira ◽  
Carolina Herrera ◽  
José Bonomi-Barufi ◽  
...  

Macroalgae belong to a diverse group of organisms that could be exploited for biomolecule application. Among the biocompounds found in this group, mycosporine-like amino acids (MAAs) are highlighted mainly due to their photoprotection, antioxidant properties, and high photo and thermo-stability, which are attractive characteristics for the development of cosmeceutical products. Therefore, here we revise published data about MAAs, including their biosynthesis, biomass production, extraction, characterization, identification, purification, and bioactivities. MAAs can be found in many algae species, but the highest concentrations are found in red macroalgae, mainly in the order Bangiales, as Porphyra spp. In addition to the species, the content of MAAs can vary depending on environmental factors, of which solar radiation and nitrogen availability are the most influential. MAAs can confer photoprotection due to their capacity to absorb ultraviolet radiation or reduce the impact of free radicals on cells, among other properties. To extract these compounds, different approaches can be used. The efficiency of these methods can be evaluated with characterization and identification using high performance liquid chromatography (HPLC), associated with other apparatus such as mass spectrometry (MS) and nuclear magnetic resonance (NMR). Therefore, the data presented in this review allow a broad comprehension of MAAs and show perspectives for their inclusion in cosmeceutical products.


2010 ◽  
Vol 89 (4) ◽  
pp. 411-416 ◽  
Author(s):  
M. Yamada ◽  
T. Ueno ◽  
H. Minamikawa ◽  
N. Sato ◽  
F. Iwasa ◽  
...  

Lack of cytocompatibility in bone substitutes impairs healing in surrounding bone. Adverse biological events around biomaterials may be associated with oxidative stress. We hypothesized that a clinically used inorganic bone substitute is cytotoxic to osteoblasts due to oxidative stress and that N-acetyl cysteine (NAC), an antioxidant amino acid derivative, would detoxify such material. Only 20% of rat calvaria osteoblasts were viable when cultured on commercial deproteinized bovine bone particles for 24 hr, whereas this percentage doubled on bone substitute containing NAC. Intracellular ROS levels markedly increased on and under bone substitutes, which were reduced by prior addition of NAC to materials. NAC restored suppressed alkaline phosphatase activity in the bone substitute. Proinflammatory cytokine levels from human osteoblasts on the bone substitute decreased by one-third or more with addition of NAC. NAC alleviated cytotoxicity of the bone substitute to osteoblastic viability and function, implying enhanced bone regeneration around NAC-treated inorganic biomaterials.


Sign in / Sign up

Export Citation Format

Share Document