scholarly journals Metallic Nanowire Percolating Network: From Main Properties to Applications

Author(s):  
Daniel Bellet ◽  
Dorina T. Papanastasiou ◽  
Joao Resende ◽  
Viet Huong Nguyen ◽  
Carmen Jiménez ◽  
...  

There has been lately a growing interest into flexible, efficient and low-cost transparent electrodes which can be integrated for many applications. This includes several applications related to energy technologies (photovoltaics, lighting, supercapacitor, electrochromism, etc.) or displays (touch screens, transparent heaters, etc.) as well as Internet of Things (IoT) linked with renewable energy and autonomous devices. This associated industrial demand for low-cost and flexible industrial devices is rapidly increasing, creating a need for a new generation of transparent electrodes (TEs). Indium tin oxide has so far dominated the field of TE, but indium’s scarcity and brittleness have prompted a search into alternatives. Metallic nanowire (MNW) networks appear to be one of the most promising emerging TEs. Randomly deposited MNW networks, for instance, can present sheet resistance values below 10 Ω/sq., optical transparency of 90% and high mechanical stability under bending tests. AgNW or CuNW networks are destined to address a large variety of emerging applications. The main properties of MNW networks, their stability and their integration in energy devices are discussed in this contribution.

Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 108 ◽  
Author(s):  
Gitae Moon ◽  
Wonjun Jang ◽  
Intae Son ◽  
Hyun Cho ◽  
Yong Park ◽  
...  

Indium tin oxide (ITO) transparent electrodes are troubled with high cost and poor mechanical stability. In this study, layer-by-layer (LBL)-processed thin films with single-walled carbon nanotubes (SWNTs) exhibited high transparency and electrical conductivity as a candidate for ITO replacement. The repetitive deposition of polycations and stabilized SWNTs with a negative surfactant exhibits sufficiently linear film growth and high optoelectronic performance to be used as transparent electrodes for vertically aligned (VA) liquid crystal display (LCD) cells. The LC molecules were uniformly aligned on the all of the prepared LBL electrodes. VA LCD cells with SWNT LBL electrodes exhibited voltage-transmittance (V-T) characteristics similar to those with the conventional ITO electrodes. Although the response speeds were slower than the LCD cell with the ITO electrode, as the SWNT layers increased, the display performance was closer to the LCD cells with conventional ITO electrode. This work demonstrated the good optoelectronic performance and alignment compatibility with LC molecules of the SWNT LBL assemblies, which are potential alternatives to ITO films as transparent electrodes for LCDs.


Transparent conducting electrodes (TCEs) play a vital role for the fabrication of solar cells and pivoted almost 50% of the total cost. Recently several materials have been identified as TCEs in solar cell applications. Still, indium tin oxide (ITO) based TCEs have dominated the market due to their outstanding optical transparency and electrical conductivity. However, inadequate availability of indium has increased the price of ITO based TCEs, which attracts the researchers to find alternative materials to make solar technology economical. In this regard, various kinds of conducting materials are available and synthesized worldwide with high electrical conductivity and optical transparency in order to find alternative to ITO based electrodes. Especially, new generation nanomaterials have opened a new window for the fabrication of cost effective TCEs. Carbon nanomaterials such as graphene, carbon nanotubes (CNTs), metal nanowires (MNWs) and metal mesh (MMs) based electrodes especially attracted the scientific community for fabrication of low cost photovoltaic devices. In addition to it, various conducting polymers such as poly (3, 4-ethylene dioxythiophene): poly (styrenesulfonate) (PEDOT:PSS) based TCEs have also showed their candidacy as an alternative to ITO based TCEs. Thus, the present chapter gives an overview on materials available for the TCEs and their possible use in the field of solar cell technology


2021 ◽  
Vol 11 (17) ◽  
pp. 8035
Author(s):  
Vittorio Scardaci

Transparent electrodes are essential elements of devices bearing a screen or display, as well as solar cells, LEDs etc. To overcome the drawbacks presented by indium tin oxide, nanomaterials have been proposed for a long time as alternatives. Metal nanowires are particularly interesting for their high intrinsic electrical conductivity. Copper nanowires have attracted wide interest due to the low cost and high abundancy of the starting material. However, they are easily oxidized thus suitable strategies must be devised to prevent it. This review discusses the fundamental properties and challenges of copper nanowires, focusing on the efforts made to make them longer and thinner then the strategies to prevent oxidation and to join them in the network are presented. After that, mechanical properties are summarized and applications are presented, before conclusions and perspectives are finally given.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luis Felipe Gerlein ◽  
Jaime Alberto Benavides-Guerrero ◽  
Sylvain G. Cloutier

AbstractOn the long road towards low-cost flexible hybrid electronics, integration and printable solar energy harvesting solutions, there is an urgent need for high-performance transparent conductive electrodes produced using manufacturing-ready techniques and equipment. In recent years, randomly-distributed metallic nanowire-based transparent mesh electrodes have proven highly-promising as they offer a superb compromise between high performances and low fabrication costs. Unfortunately, these high figure-of-merit transparent mesh electrodes usually rely heavily on extensive post-deposition processing. While conventional thermal annealing yields good performances, it is especially ill-suited for deposition on low-temperature substrates or for high-throughput manufacturing solutions. Similarly, laser-induced annealing severely limits the processing time for electrodes covering large surfaces. In this paper, we report the fabrication of ultra high-performance silver nanowires-based transparent conductive electrodes fabricated using optimized manufacturing-ready ultrafast photonic curing solutions. Using conventional indium tin oxide (ITO) as our benchmark for transparent electrodes, we demonstrate a 2.6–2.7 $$\times $$ × performance gain using two different figure-of-merit indicators. Based on these results, we believe this research provides an ideal manufacturing-ready approach for the large-scale and low-cost fabrication of ultra high-performance transparent electrodes for flexible hybrid electronics and solar-energy harvesting applications.


NANO ◽  
2019 ◽  
Vol 14 (04) ◽  
pp. 1930005 ◽  
Author(s):  
Jia Feng Chao ◽  
Yong Qiang Meng ◽  
Jing Bing Liu ◽  
Qian Qian Zhang ◽  
Hao Wang

Transparent conducting films based on solution-synthesized copper nanowires (Cu NWs) are considered to be an attractive alternative to indium tin oxide (ITO) due to the relative abundance of Cu and the low cost of solution-phase NW coating processes. Moreover, transparent electrodes tend to be flexible. This makes Cu NWs more attractive because ITO is brittle and can not meet the requirements of flexibility. For Cu NWs, aspect ratio is an important property. Cu NWs can be directly prepared by chemical reduction with various reducing agents and suitable capping agents. In general, the selectivity of the capping agent is very important for the formation of one-dimensional nanostructures because it plays a major role in the thermodynamic regulations and growth kinetics that influence the geometry and morphology of the crystal facets. Therefore, different aspect ratios are formed. Conductivity is the most important property for transparent electrodes. Organic pickling, annealing and glare pulses have a certain improvement in conductivity. Meanwhile, it is also essential to increase the oxidation resistance of the transparent electrode. The reduction of graphene oxide (r-GO), the coating of metal and polymer improve the oxidation resistance of the transparent electrode to varying degrees. This paper reviews the effect of different capping agents on the aspect ratio of NWs, and the effects of different post-treatments on oxidation resistance and conductivity of transparent electrodes.


Micro ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 215-227
Author(s):  
Jenny L. N. Boane ◽  
Pedro Centeno ◽  
Ana Mouquinho ◽  
Miguel Alexandre ◽  
Tomás Calmeiro ◽  
...  

Microstructured transparent conductive oxides (TCOs) have shown great potential as photonic electrodes in photovoltaic (PV) applications, providing both optical and electrical improvements in the solar cells’ performance due to: (1) strong light trapping effects that enhance broadband light absorption in PV material and (2) the reduced sheet resistance of the front illuminated contact. This work developed a method for the fabrication and optimization of wavelength-sized indium zinc oxide (IZO) microstructures, which were soft-patterned on flexible indium tin oxide (ITO)-coated poly(ethylene terephthalate) (PET) substrates via a simple, low-cost, versatile, and highly scalable colloidal lithography process. Using this method, the ITO-coated PET substrates patterned with IZO micro-meshes provided improved transparent electrodes endowed with strong light interaction effects—namely, a pronounced light scattering performance (diffuse transmittance up to ~50%). In addition, the photonic-structured IZO mesh allowed a higher volume of TCO material in the electrode while maintaining the desired transparency, which led to a sheet resistance reduction (by ~30%), thereby providing further electrical benefits due to the improvement of the contact conductance. The results reported herein pave the way for a new class of photonic transparent electrodes endowed with mechanical flexibility that offer strong potential not only as advanced front contacts for thin-film bendable solar cells but also for a much broader range of optoelectronic applications.


1993 ◽  
Vol 71 (1-2) ◽  
pp. 25-28 ◽  
Author(s):  
H. El-Kashef

For frequency stabilization and tuning of active and passive laser resonators, a new temperature-compensated piezo-mirror translator has been developed. It has compact size, high mechanical stability, high-voltage tensile strength, high adjustable speed, and low cost. It allows one to suppress, efficiently, frequency changes of laser resonators if a suitably high voltage is applied to it.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Mariya Aleksandrova

Several recent developments in material science and deposition methods for flexible organic light-emitting devices (OLEDs) are surveyed. The commonly used plastic substrates are compared, according to their mechanical, optical, thermal, and chemical properties. Multilayer electrode structures, used as transparent electrodes, replacing conventional indium tin oxide (ITO) are presented and data about their conductivity, transparency, and bending ability are provided. Attention is paid to some of the most popular industrial processes for flexible OLEDs manufacturing, such as roll-to-roll printing, inkjet printing, and screen printing. Main specifics and challenges, related to the foils reliability, mechanical stability of the transparent electrodes, and deposition and patterning of organic emissive films, are discussed.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1489
Author(s):  
Bhaskar Parida ◽  
Saemon Yoon ◽  
Dong-Won Kang

Materials and processing of transparent electrodes (TEs) are key factors to creating high-performance translucent perovskite solar cells. To date, sputtered indium tin oxide (ITO) has been a general option for a rear TE of translucent solar cells. However, it requires a rather high cost due to vacuum process and also typically causes plasma damage to the underlying layer. Therefore, we introduced TE based on ITO nanoparticles (ITO-NPs) by solution processing in ambient air without any heat treatment. As it reveals insufficient conductivity, Ag nanowires (Ag-NWs) are additionally coated. The ITO-NPs/Ag-NW (0D/1D) bilayer TE exhibits a better figure of merit than sputtered ITO. After constructing CsPbBr3 perovskite solar cells, the device with 0D/1D TE offers similar average visible transmission with the cells with sputtered ITO. More interestingly, the power conversion efficiency of 0D/1D TE device was 5.64%, which outperforms the cell (4.14%) made with sputtered-ITO. These impressive findings could open up a new pathway for the development of low-cost, translucent solar cells with quick processing under ambient air at room temperature.


2021 ◽  
pp. 296-302
Author(s):  
Ryosuke Hirota ◽  
Makoto Emori ◽  
Yoshinori Terashima ◽  
Kousuke Iba ◽  
Noriyuki Iesato ◽  
...  

We present the case of a 15-year-old girl. Two months after becoming aware of pain, she was diagnosed with a sacral tumor and referred to our department. She was diagnosed with a sacral Ewing’s sarcoma; after chemotherapy, it was determined that the tumor could be resected, so surgical treatment was performed. The sacrum and ilium were partially resected at the lower end of S1, and the lumbar vertebrae and pelvis were fixed with a pedicle screw and two iliac screws on each side of L3, and the sacral resection was reconstructed with a tibial strut allograft. No tumor recurrence or metastasis has been observed 1 year postoperatively. She developed bladder and rectal dysfunction, but she remained independent in activities of daily living and her daily life was not limited. The bone fusion in the reconstructed area confirmed the lack of instrumentation looseness. Surgical treatment for sacral Ewing’s sarcoma was performed to cure the patient. We believe that the tibial allograft contributed to the patient’s ability to walk on her own due to its high mechanical stability. Postoperative bone healing was observed with the same material, suggesting that the tibial allograft is useful for similar procedures.


Sign in / Sign up

Export Citation Format

Share Document