scholarly journals ‐sitosterol and gentisic acid loaded 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine liposomal particles

2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Aleksandra A. Jovanović ◽  
Bojana D. Balanč ◽  
Ajda Ota ◽  
Verica B. Djordjević ◽  
Katarina P. Šavikin ◽  
...  

The aim of the present study was the examination of the impact of -sitosterol andgentisic acid on the characteristics of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine(DPPC) liposomal particles: (a) bilayer permeability (fluorescence spectroscopy),(b) particle size, polydispersity index (PDI) and zeta potential (photon correlationspectroscopy) and (c) thermal properties (differential scanning calorimetry). -sitosterol induced the increase of liposomal bilayer rigidity, due to rearranging ofthe phospholipid chains, while gentisic acid enhanced the membrane fluidity, dueto the reduced orderliness and the increase of phospholipid dynamics. The inclusionof -sitosterol in liposomes caused a significant increase in particle diameterand PDI, while the encapsulation of gentisic acid did not have influence on particlesize distribution. Apart from that, the presence of -sitosterol resulted in thesignificant zeta potential increase, and thus a better stability of liposomal spheres(in the absence and in the presence of gentisic acid). -sitosterol decreased maintransition temperature (Tm) and phase transition enthalpy (H), and caused thedisappearance of the pre-transition peak as well, whereas the presence of gentisicacid produced a slight decrease in Tm and increase of H. Therefore, gentisic acidhad more favourable, stabilizing interactions with phospholipids than -sitosterol.Thus, it can be concluded that -sitosterol is located in the bilayer interior betweenphospholipids acyl chains, and gentisic acid is incorporated near the outer leaflet ofthe phospholipid membrane, next to the polar head groups. -sitosterol and gentisicacid loaded DPPC liposomal particles have a potential to be used in food andpharmaceutical products, due to the important individual and possible synergisticbeneficial health properties of -sitosterol and gentisic acid.

Membranes ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 25
Author(s):  
Javed Alam ◽  
Arun Kumar Shukla ◽  
Mohammad Azam Ansari ◽  
Fekri Abdulraqeb Ahmed Ali ◽  
Mansour Alhoshan

We fabricated a nanofiltration membrane consisting of a polyaniline (PANI) film on a polyphenylsulfone (PPSU) substrate membrane. The PANI film acted as a potent separation enhancer and antimicrobial coating. The membrane was analyzed via scanning electron microscopy and atomic force microscopy to examine its morphology, topography, contact angle, and zeta potential. We aimed to investigate the impact of the PANI film on the surface properties of the membrane. Membrane performance was then evaluated in terms of water permeation and rejection of methylene blue (MB), an organic dye. Coating the PPSU membrane with a PANI film imparted significant advantages, including finely tuned nanometer-scale membrane pores and tailored surface properties, including increased hydrophilicity and zeta potential. The PANI film also significantly enhanced separation of the MB dye. The PANI-coated membrane rejected over 90% of MB with little compromise in membrane permeability. The PANI film also enhanced the antimicrobial activity of the membrane. The bacteriostasis (BR) values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Escherichia coli were 63.5% and 95.2%, respectively. The BR values of PANI-coated PPSU membranes after six and sixteen hours of incubation with Staphylococcus aureus were 70.6% and 88.0%, respectively.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 455
Author(s):  
Emilia Szymańska ◽  
Katarzyna Woś-Latosi ◽  
Julia Jacyna ◽  
Magdalena Dąbrowska ◽  
Joanna Potaś ◽  
...  

Microparticles containing water-soluble zidovudine were prepared by spray-drying using chitosan glutamate and beta-glycerophosphate as an ion crosslinker (CF). The Box–Behnken design was applied to optimize the microparticles in terms of their drug loading and release behavior. Physicochemical studies were undertaken to support the results from dissolution tests and to evaluate the impact of the crosslinking ratio on the microparticles’ characteristics. The zidovudine dissolution behavior had a complex nature which comprised two phases: an initial burst effect followed with a prolonged release stage. The initial drug release, which can be modulated by the crosslinking degree, was primarily governed by the dissolution of the drug crystals located on the microparticles’ surfaces. In turn, the further dissolution stage was related to the drug diffusion from the swollen polymer matrix and was found to correlate with the drug loading. Differential Scanning Calorimetry (DSC) studies revealed the partial incorporation of a non-crystallized drug within the polymer matrix, which correlated with the amount of CF. Although CF influenced the swelling capacity of chitosan glutamate microparticles, surprisingly a higher amount of CF did not impact the time required for 80% of the drug to be released markedly. The formulation with the lowest polymer:CF ratio, 3:1, was selected as optimal, providing satisfactory drug loading and displaying a moderate burst effect within the first 30 min of the study, followed with a prolonged drug release of up to 210 min.


2021 ◽  
pp. 002199832199945
Author(s):  
Jong H Eun ◽  
Bo K Choi ◽  
Sun M Sung ◽  
Min S Kim ◽  
Joon S Lee

In this study, carbon/epoxy composites were manufactured by coating with a polyamide at different weight percentages (5 wt.%, 10 wt.%, 15 wt.%, and 20 wt.%) to improve their impact resistance and fracture toughness. The chemical reaction between the polyamide and epoxy resin were examined by fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray photoelectron spectroscopy. The mechanical properties and fracture toughness of the carbon/epoxy composites were analyzed. The mechanical properties of the carbon/epoxy composites, such as transverse flexural tests, longitudinal flexural tests, and impact tests, were investigated. After the impact tests, an ultrasonic C-scan was performed to reveal the internal damage area. The interlaminar fracture toughness of the carbon/epoxy composites was measured using a mode I test. The critical energy release rates were increased by 77% compared to the virgin carbon/epoxy composites. The surface morphology of the fractured surface was observed. The toughening mechanism of the carbon/epoxy composites was suggested based on the confirmed experimental data.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Alessio Ausili ◽  
Inés Rodríguez-González ◽  
Alejandro Torrecillas ◽  
José A. Teruel ◽  
Juan C. Gómez-Fernández

The synthetic estrogen diethylstilbestrol (DES) is used to treat metastatic carcinomas and prostate cancer. We studied its interaction with membranes and its localization to understand its mechanism of action and side-effects. We used differential scanning calorimetry (DSC) showing that DES fluidized the membrane and has poor solubility in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) in the fluid state. Using small-angle X-ray diffraction (SAXD), it was observed that DES increased the thickness of the water layer between phospholipid membranes, indicating effects on the membrane surface. DSC, X-ray diffraction, and 31P-NMR spectroscopy were used to study the effect of DES on the Lα-to-HII phase transition, and it was observed that negative curvature of the membrane is promoted by DES, and this effect may be significant to understand its action on membrane enzymes. Using the 1H-NOESY-NMR-MAS technique, cross-relaxation rates for different protons of DES with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) protons were calculated, suggesting that the most likely location of DES in the membrane is with the main axis parallel to the surface and close to the first carbons of the fatty acyl chains of POPC. Molecular dynamics simulations were in close agreements with the experimental results regarding the location of DES in phospholipids bilayers.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1242
Author(s):  
Olga Mysiukiewicz ◽  
Paulina Kosmela ◽  
Mateusz Barczewski ◽  
Aleksander Hejna

Investigations related to polymer/metal composites are often limited to the analysis of the electrical and thermal conductivity of the materials. The presented study aims to analyze the impact of aluminum (Al) filler content (from 1 to 20 wt%) on the rarely investigated properties of composites based on the high-density polyethylene (HDPE) matrix. The crystalline structure, rheological (melt flow index and oscillatory rheometry), thermal (differential scanning calorimetry), as well as static (tensile tests, hardness, rebound resilience) and dynamic (dynamical mechanical analysis) mechanical properties of composites were investigated. The incorporation of 1 and 2 wt% of aluminum filler resulted in small enhancements of mechanical properties, while loadings of 5 and 10 wt% provided materials with a similar performance to neat HDPE. Such results were supported by the lack of disturbances in the rheological behavior of composites. The presented results indicate that a significant content of aluminum filler may be introduced into the HDPE matrix without additional pre-treatment and does not cause the deterioration of composites’ performance, which should be considered beneficial when engineering PE/metal composites.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 591
Author(s):  
Bożena Grimling ◽  
Bożena Karolewicz ◽  
Urszula Nawrot ◽  
Katarzyna Włodarczyk ◽  
Agata Górniak

Chitosans represent a group of multifunctional drug excipients. Here, we aimed to estimate the impact of high-molecular weight chitosan on the physicochemical properties of clotrimazole–chitosan solid mixtures (CL–CH), prepared by grinding and kneading methods. We characterised these formulas by infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffractometry, and performed in vitro clotrimazole dissolution tests. Additionally, we examined the antifungal activity of clotrimazole–chitosan mixtures against clinical Candida isolates under neutral and acid conditions. The synergistic effect of clotrimazole and chitosan S combinations was observed in tests carried out at pH 4 on Candida glabrata strains. The inhibition of C. glabrata growth reached at least 90%, regardless of the drug/excipient weight ratio, and even at half of the minimal inhibitory concentrations of clotrimazole. Our results demonstrate that clotrimazole and high-molecular weight chitosan could be an effective combination in a topical antifungal formulation, as chitosan acts synergistically with clotrimazole against non-albicans candida strains.


2005 ◽  
Vol 903 ◽  
Author(s):  
Victor A. Golubev ◽  
Andrey V. Strikanov ◽  
Grigory A. Potemkin ◽  
Ludmila V. Zueva ◽  
Aleksey V. Golubev ◽  
...  

AbstractThe Dynamic Compacting (DC) method is promising method to produce considerable-size nonporous wares. The phenomenon is based on the impact of shock wave on the initial powders of amorphous alloys. Every time when the shock wave propagates through the bulk of substance then the temperature rises substantially. Therefore there is a need of study of the DC’s effect on the structure and properties of the amorphous alloys. The results of the thermal analysis (in particular, Differential Scanning Calorimetry) of the samples of the soft magnetic alloys are presented in the report. These results concern with amorphous alloys of 5BDSR, GM414, 10NSR trademarks before DC and after DC, respectively. It is shown there is single low-temperature endothermic peak (near 300C) and there are several high temperature exothermic peaks (near 540C, 650C, and 700C). The first peak is related to glass-transition, the following peaks are related to formation of nano-crystalline phases. It was proved by XRD analysis data. The optimal regimes of the thermal processing of final wares were chosen on the base of thermal- and XRD-analysis. The study of the effects of these regimes on the properties (magnetic conductivity, specific losses etc.) of the circular magnetic conductors was executed. In particular, thermal- as well as thermo-magnetic processing of magnetic conductors based on 5BDSR amorphous alloy (after DC) essentially improves their magnetic properties. For example, magnetic conductivity fÝ increases approximately by factor 17 with respect to the magnitude before DC.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xinlei Jia ◽  
Jingyu Wang ◽  
Conghua Hou ◽  
Yingxin Tan

Herein, a green process for preparing nano-HMX, mechanical demulsification shearing (MDS) technology, was developed. Nano-HMX was successfully fabricated via MDS technology without using any chemical reagents, and the fabrication mechanism was proposed. Based on the “fractal theory,” the optimal shearing time for mechanical emulsification was deduced by calculating the fractal dimension of the particle size distribution. The as-prepared nano-HMX was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC). And the impact sensitivities of HMX particles were contrastively investigated. The raw HMX had a lower fractal dimension of 1.9273. The ideal shearing time was 7 h. The resultant nano-HMX possessed a particle size distribution ranging from 203.3 nm to 509.1 nm as compared to raw HMX. Nano-HMX particles were dense spherical, maintaining β-HMX crystal form. In addition, they had much lower impact sensitivity. However, the apparent activation energy as well as thermal decomposition temperature of nano-HMX particles was decreased, attributing to the reduced probability for hotspot generation. Especially when the shearing time was 7 h, the activation energy was markedly decreased.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiangtao Xing ◽  
Weili Wang ◽  
Wenzheng Xu ◽  
Tianle Yao ◽  
Jun Dong ◽  
...  

In order to improve the safety of hexanitrohexaazaisowurtzitane (CL-20), submicron CL-20 particles were prepared by a siphon ultrasonic-assisted spray refining experimental device. The samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), and the impact sensitivity of the samples was tested. The results show that the particle size of siphon-refined CL-20 is about 800 nm~1 μm, which is more smooth, mellow, and dense than that of CL-20 prepared by a traditional pressure-refined method. The peak diffraction angle of pressure- and siphon-refined CL-20 is basically the same as that of raw CL-20, and their crystal forms are ε type. The peak strength of pressure- and siphon-refined CL-20 decreased obviously. The apparent activation energy of pressure-refined CL-20 and siphon-refined CL-20 is 13.3 kJ/mol and 11.95 kJ/mol higher than that of raw CL-20, respectively. The thermal stability of CL-20 is improved. The activation enthalpy (ΔH#) is significantly higher than that of raw CL-20, and the characteristic drop is 70.4% and 82.7% higher than that of raw CL-20. The impact sensitivity of siphon-refined CL-20 is lower than that of pressure-refined CL-20, so the safety performance of an explosive is improved obviously.


Sign in / Sign up

Export Citation Format

Share Document