scholarly journals Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying

2015 ◽  
Vol 4 (2) ◽  
Author(s):  
Isela A. Flores-Belmont ◽  
Enrique Palou ◽  
Aurelio López-Malo ◽  
María Teresa Jiménez-Munguía

The aim of this study was to evaluate the survival of Lactobacillus acidophilus that had been simple or double spray dried using chitosan to cause microencapsulation and which had been exposed to model gastrointestinal conditions. In addition, the study also determined the physicochemical properties of the powder containing the microencapsulated probiotic.Chitosan-inulin or chitosan-maltodextrin (1:15 or 1:25) solutions were inoculated with 1012 cfu mL-1 of L. acidophilus, for simple microencapsulation. The different solutions were dried using a spray dryer with an inlet air temperature of 130°C and a solution flux of 4.8 g min-1. A two-step process was used for the double microencapsulation. In the first step, the probiotic was added to a gelatin-maltodextrin (1:25) solution and then spray dried; for the second step, the microencapsulated probiotic was added to a chitosan-inulin or chitosan-maltodextrin (1:25) solution and then it was spray dried again.With the simple microencapsulated probiotic, a microbial reduction of 7 log cycles was obtained. With the double microencapsulated probiotic only 3 log reductions were achieved. The double microencapsulated probiotic thus demonstrated greater resistance to simulated gastrointestinal conditions. The powders produced were shown to have water activity values of 0.176 - 0.261 at 25 °C and moisture content of 0.8 – 1.0%, which are characteristic of spray dried products. The bulk density was significantly (p < 0.05) lower (300 kg m-3) for simple than for double (400 kg m-3) microencapsulated probiotic powders. Solubility and dispersibility of the powder microcapsules were better at lower pH values.Double microencapsulation using a process of spray drying is therefore recommended for probiotics, thus exploiting chitosan’s insolubility in water, which can be applied for the of development food products.

2020 ◽  
pp. 141-148
Author(s):  
Rosalinda C Torres ◽  
Rowelain Mae G Yumang ◽  
Chelsea Kate F Jose ◽  
Danielle Camille P Canillo

Dragon fruit (Hylocereus polyrhizus) is known for its purple-coloured peels and pulp, which can be attributed to the presence of betalains. In this study, the potential of red dragon fruit as a source of natural colorant was investigated. Betacyanins were extracted from red dragon fruit peels and flesh in 1:3 ratio with water. Microencapsulation by spray-drying was done by adding 5% and 10% (w/v) maltodextrin (DE 11.8) to peels and flesh extracts, respectively. The spray-dried colorant powders all obtained <10% moisture content, 5.261-6.409 g/100g hygroscopic moisture content, and 5.317-7.349(mg/100L) betacyanin content. Morphological characterization revealed spherical, agglomerated particles with visible cracks on the surface. The stability study conducted showed that pigment retention was lowest at 70°C and highest at 4°C. Keywords: Hylocereus polyrhizus; Red dragon fruit; Betacyanin; Microencapsulation; Physicochemical properties


2018 ◽  
Vol 48 (6) ◽  
Author(s):  
Graciele Lorenzoni Nunes ◽  
Mariana Heldt Motta ◽  
Alexandre José Cichoski ◽  
Roger Wagner ◽  
Édson Irineu Muller ◽  
...  

ABSTRACT: Lactobacillus acidophillus La-5 (ML) and Bifidobacterium Bb-12 (MB) microparticles were produced at different temperatures by spray dryer. The influence of different temperatures on the viability, encapsulation efficiency, water activity and moisture were evaluated. Microparticles that presented more viability were submitted to thermal resistance, gastrointestinal simulation, storage stability, morphology and particle size analyses. Drying temperature of 130°C showed higher encapsulation efficiency, 84.61 and 79.73% for Lactobacillus acidophillus (ML) and Bifidobacterium Bb-12 (MB) microparticles, respectively. In the evaluation of thermal resistance and gastrointestinal simulation, the microparticles of Lactobacillus acidophillus La-5 (ML) presented higher survival than Bifidobacterium Bb-12 (MB) under these conditions. In storage viability only the Lactobacillus acidophillus La-5 (ML) microparticles remained viable at all evaluated temperatures during the 120 days. The particle sizes reported were 4.85 for Lactobacillus acidophillus La-5 (ML) and 8.75 for Bifidobacterium Bb-12 (MB), being in agreement with the desired values for products obtained by spray dryer. Finally, the Lactobacillus acidophilus La-5 (ML) microparticles were shown to be more resistant under the conditions evaluated in this study.


2020 ◽  
Vol 28 (4) ◽  
Author(s):  
Joko Nugroho Wahyu Karyadi ◽  
Dwi Ayuni ◽  
Tsania Ayu Rohani ◽  
Devi Yuni Susanti

Nowadays, coffee has become one of the most favorable commodities for beverages, flavoring as well as for cosmetic industries. In Indonesia, coffee becomes more popular, especially among youngsters. In this study, the spray drying process was evaluated, giving the potential of how simple spray dryer can help local farmers of Indonesia to produce their coffee powders. One small scale of spray dryer was constructed with the total dimensions of 2.85 x 0.64 for length x width, with a height of 2.32 m. The spray dryer was equipped with a digital thermo regulator, the pneumatic nozzle system, and 4 finned heaters with the power of 2700 watt for each. The spray drying constructed was revealed to be able to produce coffee powders with fine quality. The inlet temperature of the drying chamber, as well as the initial Brix content of feed solution, were proven to affect the physical properties of powder produced such as moisture content, product yield, and solubility. The final moisture content of powders was ranged from 3 - 7% db, with the high product yield of the drying process, which could reach up to 70%.


2019 ◽  
Vol 819 ◽  
pp. 246-251
Author(s):  
Pontip Benjasirimongkol ◽  
Suchada Piriyaprasarth ◽  
Pornsak Sriamornsak

Spray-dried emulsion is one of the useful strategies to enhance dissolution properties of poorly water-soluble drug for example resveratrol. Physical properties i.e. particle size and moisture content of spray-dried emulsions could affect their quality attributes. In this study, Box-Behnken design was performed in order to determine effect of formulation and spray drying condition parameters i.e. feed rate on responses including particle size and moisture content of resveratrol spray-dried emulsions. The spray-dried emulsions were prepared by varying content of low-methoxyl pectin (LMP) and caprylic/capric glycerides (CCG) and sprayed at different feed rate. Box-Behnken design results reveled that the particle size of spray-dried emulsions was significantly influenced by the content of LMP, interactions between LMP and CCG, interactions between LMP and feed rate. LMP content showed positive relationships with the particle size. The content of CCG had negative significantly effect on moisture content of the spray-dried emulsion. Mathematical models describing the relationships between studied parameters and responses provided good predictability. Based on model, the optimal formulation was prepared using 2.6% w/w of LMP, 9% w/w of CCG, and feed rate of 6.8 mL/min and the small particle size (~5.9 μm) and low moisture content (~5.6%) were obtained. The spray-dried emulsions were successfully prepared with satisfy quality. The Box-Behnken design would be an effective tool to elucidate influence of formulation and spray drying conditions on particle size and moisture content of the spray-dried emulsions. Further, the design aided in developing and optimizing the spray-dried emulsions with specified quality.


2013 ◽  
Vol 3 (1) ◽  
pp. 61 ◽  
Author(s):  
Paola Hernández-Carranza ◽  
Aurelio López-Malo ◽  
Maria-Teresa Jiménez-Munguía

<p>Survival and quality efficiency of <em>Lactobacillus casei </em>microencapsulated by spray drying using different vegetable extracts (asparagus, artichoke, orange or grapefruit peel) were evaluated. Aqueous suspensions of the vegetable extracts with or without maltodextrin (adjusting to 25% w/w) were prepared for the microencapsulation of <em>L. casei</em>. The evaluated spray drying conditions were at a fixed air inlet temperature (Tin) of 145 °C and varying the aqueous suspensions flux (Q) of 10 or 15 g/min. Survival of <em>L. casei</em> was evaluated after the spray drying process and after 60 days of storage at 25 °C. The quality efficiency of the microencapsulated <em>L. casei</em> was evaluated by measuring in the product, physicochemical properties (moisture content, a<sub>w</sub>), determining moisture gain and modeling adsorption isotherms, besides analyzing micrographs. Results demonstrated that moisture content of the different spray drying powders was less than 2% wb and less than 0.30 of a<sub>w</sub>. It was evidently that the use of maltodextrin reduced 50% the powders moisture gain (hygroscopicity) therefore reducing stickiness problems during storage. The Scanning Electron Microscopy (SEM) confirmed individual particles formation with a homogeneous coat when using vegetable extracts+maltodextrin and hence better powder quality than without it. The microbial reduction of <em>L. casei</em> after the spray drying process was of one log cycle and significantly different (p &lt; 0.05) with the presence of maltodextrin when using orange or grapefruit peel. A microbial population over 10<sup>7</sup> cfu/g of <em>L. casei</em> microencapsulated was maintained after 60 days of storage which guarantees its use to develop functional food.</p>


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1316 ◽  
Author(s):  
Chuang Zhang ◽  
Siew Lin Ada Khoo ◽  
Peter Swedlund ◽  
Yukiharu Ogawa ◽  
Yang Shan ◽  
...  

Microencapsulation of fermented noni juice (FNJ) into powder format could protect bioactive compounds, reduce the unpleasant odour and improve the acceptability for consumers. Blends of maltodextrin (MD) and gum acacia (GA) were used to achieve spray-drying microencapsulation of noni juice at different blending ratios. The physicochemical properties including microstructure, moisture content, water activity, particle size, bulk/tapped density, dissolution rate, ATR-FTIR and the bioaccessibility of bioactive compounds in powders during in vitro digestion were examined. Results showed that blends produced with more GA produced microcapsules with lower moisture content, water activity and bulk/tapped density, but slower powder dissolution. The ATR-FTIR results suggested that there were no significant chemical interactions between the core material and carrier or between the MD and GA in the blend powders. The spray-dried noni juice powder produced using the blends with higher ratio of GA to MD showed a better protection on the bioactive compounds, resulting in a higher bioaccessibility of powders during in vitro digestion. This study provides insights into microencapsulation of noni juice using blends of MD and GA and examines the physicochemical properties and bioaccessibilities of spray-dried powders as affected by the selected carriers.


2020 ◽  
Vol 11 (10) ◽  
pp. 8694-8706
Author(s):  
Divyasree Arepally ◽  
Ravula Sudharshan Reddy ◽  
Tridib Kumar Goswami

L. acidophilus was encapsulated with maltodextrin and different concentrations of gum arabic by spray drying technology. Encapsulated cells have shown better viability under simulated gastrointestinal conditions compared to free cells.


1942 ◽  
Vol 13 (1) ◽  
pp. 5-44 ◽  
Author(s):  
E. L. Crossley ◽  
W. A. Johnson

1. A bacteriological study was made of the commercial operation over a period of 4½ years of two Kestner evaporating and spray-drying plants, handling a fairly good and a very poor milk supply respectively. Processes investigated comprised handling of raw milk, pasteurization, climbing film evaporation, handling of evaporated milk, and spray drying. Data were also obtained showing the influence of variations during processing on the moisture content and solubility of powders. Separated milk, full-cream milk, and whey were handled.2. The general bacterial flora of spray-dried powders and the influence of individual manufacturing processes, packing and storage were studied and possible control methods suggested. Data showing the extent of both hourly and seasonal variations were also obtained.3. A method of bacteriological analysis is described which gave reasonably good agreement between different workers.4. Examination of 671 powder samples showed a wide variation in individual plate counts from 200 to 19,500,000 per g. The flora on standard milk agar at 37° C. was of a specialized type and comprised comparatively few species. Thermoduric streptococci of the ‘enterococcus’ and ‘viridans’ groups predominated, Str. durans and Str. thermophilus being the commonest species; in addition, five species of micrococci, probably non-thermoduric, also occurred commonly. Aerobic spore-forming bacilli and three Achromobacter species were found regularly, but their numbers were not of practical importance. Spore-forming anaerobic bacilli were present in 14% of powder samples, probably in very small numbers, and were most frequent during the winter months.5. Coliform organisms were rarely found in 1 ml. of reconstituted milk, but were isolated from 25% of powder samples when 20 ml. of reconstituted milk was examined; coliforms occurred most frequently during the winter months. False positives due to anaerobes were common, especially in stored powders, and confirmatory tests of presumptive positives were essential. Examination of 198 coliform strains from powders and 164 strains from raw milk showed that coli types occurred less frequently in the powders, whilst aerogenes-cloacae types, particularly cloacae, were more frequent. 48·5% of the powder strains were heat resistant, as compared with 2·2% of the raw-milk strains. It was shown that the coliform flora of powder was partly due to plant contamination by heat-resistant strains, although some non-heat-resistant strains could survive spray drying. It seemed possible that coli types were less resistant to drying than aerogenes-cloacae.


2018 ◽  
Vol 11 (3) ◽  
pp. 132
Author(s):  
A. Zainal Abidin ◽  
Afrizal Vachlepi

Spray drying process design for the production of natural rubber powder from latexHigh water content in latex may result in perishable condition, high transportation costs, large packing needs, and handling difficulty due to the use of ammonia to prevent its coagulation.  A solution to this problem is to convert the latex into rubber powder using spray drying.  This work describes the design of the rubber powder production process, feedstock formulation, and the design of the dryer. Spray dryer performance is evaluated by simulation. The production process involves latex collection, quality inspection, filtration, addition of additives, and spray drying. Feedstock formulation consists of fresh latex, 1 %-w anticoagulant, and 2 %-w non-stick agent. The drying chamber is designed with a latex feed rate of 6x10-5 m3/s, moisture content of 80 %-w, density of 920 kg/m3, feed temperature of 27 oC, and drying air temperature of 140 oC. A pressurized-type nozzle is selected for the dryer. Design calculation results indicate that the dryer requires a nozzle diameter of 3.5 mm, chamber volume of 0.8 m3, cylindrical section height of 850 mm, conical section height of 870 mm, and a chamber diameter of 1000 mm. Drying time is 0.134 sec, with an overall residence time of 1.80 second. The dryer is predicted to produce natural rubber powder with a moisture content of 0.32-0.56 %-w.Keywords: latex, design, spray drying, simulation AbstrakKandungan air yang tinggi di dalam lateks dapat mengakibatkan lateks mudah rusak, biaya transportasinya tinggi, kebutuhan kemasannya besar, dan penanganannya yang ketat karena lateks mengandung amonia sebagai bahan pencegah kerusakan. Salah satu cara mengatasinya adalah mengkonversi lateks tersebut menjadi tepung karet alam dengan teknologi pengeringan semprot (spray drying). Di sini akan dipaparkan perancangan proses produksi tepung tersebut, formulasi umpannya, dan pengering semprot (spray dryer) yang digunakan untuk mengeringkan lateks. Kinerja dari pengering semprot dievaluasi dengan teknik simulasi. Rancangan proses produksi dimulai dari pengumpulan lateks, pemeriksaan kualitas lateks, penyaringan, penambahan zat aditif, dan pengeringan semprot. Formulasi umpan terdiri dari lateks segar, antikoagulan 1%-b, dan antilengket 2 %-b. Ruang   pengering semprot dirancang berdasarkan laju alir umpan lateks 6x10-5 m3/s dengan kadar air 80 %-b, densitas 920 kg/m3, suhu umpan 27 °C, dan udara pengering 140 °C. Nozzle bertekanan dipilih untuk alat ini. Hasil desain menunjukkan bahwa pengering semprot memerlukan diameter lubang nozzle 3,5 mm,volume ruang pengering 0,8 m3, tinggi bagian silinder 850 mm, kerucut 870 mm, dan diameter 1000 mm. Waktu pengeringan umpan berlangsung selama 0,134 detik dengan waktu lintasan 1,80 detik. Hasil simulasi menunjukkan pengering semprot mampu menghasilkan tepung karet alam dengan kadar air sekitar 0,32-0,56%.Kata kunci: lateks, perancangan, pengeringan semprot, simulasi


2018 ◽  
Vol 17 (03) ◽  
pp. 77-85
Author(s):  
Tan D. Nguyen

Pouzolzia zeylanica is a kind of medicinal plant which is generally cultivated in Mekong Delta region. It owns many bioactive compounds that are known to possess antioxidant, antimicrobial and anticarcinogenic properties. This study aimed to optimize additional carrier concentration for spray drying of Pouzolzia zeylanica extract. Response Surface Methodology (RSM) with central composite design (CCD) was applied for optimization and investigation of the influence of maltodextrin (5÷15%, w/v) and carrageenan gum (0.06÷1.0%, w/v) concentration on the physicochemical characteristics of spray dried powder (bioactive compounds, moisture content as well as particle size distribution). The results showed that the optimum concentrations of maltodextrin and carrageenan gum were 8.8% w/v and 0.082% w/v, respectively. At these optimal conditions, the anthocyanin, flavonoid, polyphenol, tannin, moisture content and particle size of obtained spray dried powder were 5.77 mg cyanidin-3-glycoside equivalents (CE)/100 g; 29.49 mg quercetin equivalents (QE)/g; 28.35mg gallic acid equivalents (GAE)/g; 27.44 mg tannic acid equivalents (TAE)/g, 6.55% and 6.09 μm, respectively


Sign in / Sign up

Export Citation Format

Share Document