scholarly journals Laminin signals initiate the reciprocal loop that informs breast-specific gene expression and homeostasis by activating NO, p53 and microRNAs

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Saori Furuta ◽  
Gang Ren ◽  
Jian-Hua Mao ◽  
Mina J Bissell

How mammalian tissues maintain their architecture and tissue-specificity is poorly understood. Previously, we documented both the indispensable role of the extracellular matrix (ECM) protein, laminin-111 (LN1), in the formation of normal breast acini, and the phenotypic reversion of cancer cells to acini-like structures in 3-dimensional (3D) gels with inhibitors of oncogenic pathways. Here, we asked how laminin (LN) proteins integrate the signaling pathways necessary for morphogenesis. We report a surprising reciprocal circuitry comprising positive players: laminin-5 (LN5), nitric oxide (NO), p53, HOXD10 and three microRNAs (miRNAs) — that are involved in the formation of mammary acini in 3D. Significantly, cancer cells on either 2-dimensional (2D) or 3D and non-malignant cells on 2D plastic do not produce NO and upregulate negative players: NFκB, EIF5A2, SCA1 and MMP-9 — that disrupt the network. Introducing exogenous NO, LN5 or individual miRNAs to cancer cells reintegrates these pathways and induces phenotypic reversion in 3D. These findings uncover the essential elements of breast epithelial architecture, where the balance between positive- and negative-players leads to homeostasis.

2020 ◽  
Vol 20 (21) ◽  
pp. 1868-1875
Author(s):  
Ghazala Butt ◽  
Ammad A. Farooqi ◽  
Aima Adylova ◽  
Rukset Attar ◽  
Seher Yilmaz ◽  
...  

Treatment options for effective treatment of cancer with minimum off-target effects and maximum clinical outcomes have remained overarching goals in the clinical oncology. Vitamin C has remained in the shadows of controversy since the past few decades; burgeoning evidence has started to shed light on wide-ranging anticancer effects exerted by Vitamin C to induce apoptosis in drug-resistant cancer cells, inhibit uncontrolled proliferation of the cancer cells and metastatic spread. Landmark achievements in molecular oncology have ushered in a new era, and researchers have focused on the identification of oncogenic pathways regulated by Vitamin C in different cancers. However, there are visible knowledge gaps in our understanding related to the ability of Vitamin C to modulate a myriad of transduction cascades. There are scattered pieces of scientific evidence about promising potential of Vitamin C to regulate JAK-STAT, TGF/SMAD, TRAIL and microRNAs in different cancers. However, published data is insufficient and needs to be investigated comprehensively to enable basic and clinical researchers to reap full benefits and promote result-oriented transition of Vitamin C into various phases of clinical trials. In this review, we will emphasize on available evidence related to the regulation of oncogenic cell signaling pathways by Vitamin C in different cancers. We will also highlight the conceptual gaps, which need detailed and cutting-edge research.


2019 ◽  
Vol 15 (2) ◽  
pp. 138-149
Author(s):  
Saleem Farooq ◽  
Javid A. Banday ◽  
Aashiq Hussain ◽  
Momina Nazir ◽  
Mushtaq A. Qurishi ◽  
...  

Background: Natural product, osthol has been found to have important biological and pharmacological roles particularly having inhibitory effect on multiple types of cancer. Objective: The unmet needs in cancer therapeutics make its derivatization an important and exciting field of research. Keeping this in view, a whole new series of diverse analogues of osthol (1) were synthesized. Method: All the newly synthesized compounds were made through modification in the lactone ring as well as in the side chain of the osthol molecule and were subjected to anti-proliferative screening through 3-(4,5-Dimethylthiazol-yl)-diphenyl tetrazoliumbromide (MTT) against four different human cancers of diverse origins viz. Colon (Colo-205), lung (A549), Leukemia (THP- 1) and breast (MCF-7) including SV40 transformed normal breast epithelial cell (fR-2). Results: Interestingly, among the tested molecules, most of the analogs displayed better antiproliferative activity than the parent Osthol 1. However, among all the tested analogs, compound 28 exhibited the best results against leukemia (THP1) cell line with IC50 of 5µM.Compound 28 induced potent apoptotic effects and G1 phase arrest in leukemia cancer cells (THP1). The population of apoptotic cells increased from 13.8% in negative control to 26.9% at 8μM concentration of 28. Compound 28 also induced a remarkable decrease in mitochondrial membrane potential (ΛΨm) leading to apoptosis of the cancer cells. Conclusion: A novel series of molecules derived from natural product osthol were synthesized, wherein compound 28 was found to be most effective against leukemia and with 10 fold less toxicity against normal cells. The compound induced cancer inhibition mainly through apoptosis and thus has a potential in cancer therapeutics.


2021 ◽  
Vol 22 (10) ◽  
pp. 5073
Author(s):  
Nazanin Nahrjou ◽  
Avik Ghosh ◽  
Marina Tanasova

Specific link between high fructose uptake and cancer development and progression highlighted fructose transporters as potential means to achieve GLUT-mediated discrimination between normal and cancer cells. The gained expression of fructose-specific transporter GLUT5 in various cancers offers a possibility for developing cancer-specific imaging and bioactive agents. Herein, we explore the feasibility of delivering a bioactive agent through cancer-relevant fructose-specific transporter GLUT5. We employed specific targeting of GLUT5 by 2,5-anhydro-D-mannitol and investigated several drug conjugates for their ability to induce cancer-specific cytotoxicity. The proof-of-concept analysis was carried out for conjugates of chlorambucil (CLB) in GLUT5-positive breast cancer cells and normal breast cells. The cytotoxicity of conjugates was assessed over 24 h and 48 h, and significant dependence between cancer-selectivity and conjugate size was observed. The differences were found to relate to the loss of GLUT5-mediated uptake upon increased conjugate size and hydrophobicity. The findings provide information on the substrate tolerance of GLUT5 and highlight the importance of maintaining appropriate hydrophilicity for GLUT-mediated delivery.


2017 ◽  
Vol 114 (37) ◽  
pp. E7697-E7706 ◽  
Author(s):  
Kiyotoshi Satoh ◽  
Shinichi Yachida ◽  
Masahiro Sugimoto ◽  
Minoru Oshima ◽  
Toshitaka Nakagawa ◽  
...  

Cancer cells alter their metabolism for the production of precursors of macromolecules. However, the control mechanisms underlying this reprogramming are poorly understood. Here we show that metabolic reprogramming of colorectal cancer is caused chiefly by aberrant MYC expression. Multiomics-based analyses of paired normal and tumor tissues from 275 patients with colorectal cancer revealed that metabolic alterations occur at the adenoma stage of carcinogenesis, in a manner not associated with specific gene mutations involved in colorectal carcinogenesis. MYC expression induced at least 215 metabolic reactions by changing the expression levels of 121 metabolic genes and 39 transporter genes. Further, MYC negatively regulated the expression of genes involved in mitochondrial biogenesis and maintenance but positively regulated genes involved in DNA and histone methylation. Knockdown of MYC in colorectal cancer cells reset the altered metabolism and suppressed cell growth. Moreover, inhibition of MYC target pyrimidine synthesis genes such as CAD, UMPS, and CTPS blocked cell growth, and thus are potential targets for colorectal cancer therapy.


Molecules ◽  
2018 ◽  
Vol 23 (3) ◽  
pp. 621 ◽  
Author(s):  
Jeong-Hyeon Ko ◽  
Seok-Geun Lee ◽  
Woong Yang ◽  
Jae-Young Um ◽  
Gautam Sethi ◽  
...  

Embelin is a naturally-occurring benzoquinone compound that has been shown to possess many biological properties relevant to human cancer prevention and treatment, and increasing evidence indicates that embelin may modulate various characteristic hallmarks of tumor cells. This review summarizes the information related to the various oncogenic pathways that mediate embelin-induced cell death in multiple cancer cells. The mechanisms of the action of embelin are numerous, and most of them induce apoptotic cell death that may be intrinsic or extrinsic, and modulate the NF-κB, p53, PI3K/AKT, and STAT3 signaling pathways. Embelin also induces autophagy in cancer cells; however, these autophagic cell-death mechanisms of embelin have been less reported than the apoptotic ones. Recently, several autophagy-inducing agents have been used in the treatment of different human cancers, although they require further exploration before being transferred from the bench to the clinic. Therefore, embelin could be used as a potential agent for cancer therapy.


2020 ◽  
Author(s):  
Shen Pan ◽  
Yunhong Zhan ◽  
Xiaonan Chen ◽  
Bin Wu ◽  
Bitian Liu

Abstract Background T1G3 shows a higher chance of recurrence and progression among early bladder cancer types and the available treatment option is controversial. High recurrence and progression are the problems that need to be explored and solved. Changes in the internal signals of bladder cancer cells and differential genes may be the root cause of these problems. Methods GSE120736, GSE19915, GSE19423, GSE32548 and GSE37815 datasets were obtained from Gene Expression Omnibus (GEO ) to identify differentially expressed genes (DEGs). Bladder cancer transcript data from The Cancer Genome Atlas (TCGA) were clustered into different cell-specific gene sets according to weighted gene co-expression network analysis (WGCNA). Multiple sets of databases were used for gene expression comparison, functional enrichment, and protein interaction analysis, including The Human Protein Atlas, Cancer Dependency Map, Metascape, Gene set enrichment analysis, and DisNor. Results DEGs were obtained through GEO data comparison and intersection. After WGCNA was proven to recognise cell-specific gene sets, candidate DEGs were selected and shown to be specifically expressed in cancer cells. Candidate DEGs were related to mitosis and cell cycle. Further, 12 functional candidate markers were identified from the sequencing data of 30 bladder cancer cell lines. These genes were all up-regulated and previously shown to be closely related to bladder cancer progression. Conclusions Twelve functional genes with specific differential expression in bladder cancer cells were identified. WGCNA can identify the relatively specific expression sets of different cells in bladder cancer with greater tumour heterogeneity, which provides new perspectives for future cancer research.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Martinez-Lage ◽  
R. Torres-Ruiz ◽  
P. Puig-Serra ◽  
P. Moreno-Gaona ◽  
M. C. Martin ◽  
...  

Abstract Fusion oncogenes (FOs) are common in many cancer types and are powerful drivers of tumor development. Because their expression is exclusive to cancer cells and their elimination induces cell apoptosis in FO-driven cancers, FOs are attractive therapeutic targets. However, specifically targeting the resulting chimeric products is challenging. Based on CRISPR/Cas9 technology, here we devise a simple, efficient and non-patient-specific gene-editing strategy through targeting of two introns of the genes involved in the rearrangement, allowing for robust disruption of the FO specifically in cancer cells. As a proof-of-concept of its potential, we demonstrate the efficacy of intron-based targeting of transcription factors or tyrosine kinase FOs in reducing tumor burden/mortality in in vivo models. The FO targeting approach presented here might open new horizons for the selective elimination of cancer cells.


Sign in / Sign up

Export Citation Format

Share Document