scholarly journals Efficacy of krill oil versus fish oil on obesity-related parameters and lipid gene expression in rats: randomized controlled study

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12009
Author(s):  
Mevra Aydin Cil ◽  
Atena Ghosi Ghareaghaji ◽  
Yasin Bayir ◽  
Zehra Buyuktuncer ◽  
Halit Tanju Besler

Backround This study aimed to determine the effects of LC n-3 PUFA supplementation on the prevention and treatment of obesity and obesity-related diseases, and to compare the efficiency of different LC n-3 PUFA sources via biochemical and genetic mechanisms in rats. Methods Male Wistar rats were randomized into four study groups, and fed with a standard diet, High Fat Diet (HFD), HFD+%2.5 Fish Oil (FO-HFD) or HFD+%2.5 Krill Oil (KO-HFD) for eight weeks. Food consumption, weight gain, serum glucose, insulin, ghrelin and leptin concentrations, lipid profile, liver fatty acid composition, and FADS1 and FADS2 mRNA gene expression levels were measured. Results Weight gain in each HFD group was significantly higher than control group (p < 0.001), without any differences among them (p < 0.05). LC n-3 PUFAs modified lipid profile, but not glucose tolerance. Serum leptin levels were significantly higher in HFD groups than in the control group, however, no difference in serum ghrelin levels was observed among the groups. Liver n-3 fatty acid desaturation activity was higher (p = 0.74), and liver total lipid content was lower (p = 0.86) in KO-HFD compared to FO-HFD. FADS1 gene expression was highest in the HFD group (p < 0.001) while FADS2 gene expression was highest in the FO-HFD group (p < 0.001). Conclusion LC n-3 PUFAs, especially krill oil, had moderate effects on lipid profile, but limited effects on obesity related parameters, suggesting different effects of different sources on gene expression levels. Further randomized controlled trials are needed to determine the efficacy of different LC n-3 PUFA sources in the prevention and treatment of obesity in humans.

2020 ◽  
Vol 9 (12) ◽  
pp. 3951
Author(s):  
Saori Kakehi ◽  
Yoshifumi Tamura ◽  
Kageumi Takeno ◽  
Shin-ichi Ikeda ◽  
Yuji Ogura ◽  
...  

Context: Endurance-trained athletes have high oxidative capacities, enhanced insulin sensitivities, and high intracellular lipid accumulation in muscle. These characteristics are likely due to altered gene expression levels in muscle. Design and setting: We compared intramyocellular lipid (IMCL), insulin sensitivity, and gene expression levels of the muscle in eight nonobese healthy men (control group) and seven male endurance athletes (athlete group). Their IMCL levels were measured by proton-magnetic resonance spectroscopy, and their insulin sensitivity was evaluated by glucose infusion rate (GIR) during a euglycemic–hyperinsulinemic clamp. Gene expression levels in the vastus lateralis were evaluated by quantitative RT-PCR (qRT-PCR) and microarray analysis. Results: IMCL levels in the tibialis anterior muscle were approximately 2.5 times higher in the athlete group compared to the control group, while the IMCL levels in the soleus muscle and GIR were comparable. In the microarray hierarchical clustering analysis, gene expression patterns were not clearly divided into control and athlete groups. In a gene set enrichment analysis with Gene Ontology gene sets, “RESPONSE TO LIPID” was significantly upregulated in the athlete group compared with the control group. Indeed, qRT-PCR analysis revealed that, compared to the control group, the athlete group had 2–3 times higher expressions of proliferator-activated receptor gamma coactivator-1 alpha (PGC1A), adiponectin receptors (AdipoRs), and fatty acid transporters including fatty acid transporter-1, plasma membrane-associated fatty acid binding protein, and lipoprotein lipase. Conclusions: Endurance runners with higher IMCL levels have higher expression levels of genes related to lipid metabolism such as PGC1A, AdipoRs, and fatty acid transporters in muscle.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2240
Author(s):  
Ahmed Saleh ◽  
Mohammed Alzawqari

The current study focused exclusively on evaluating the effects of replacing corn with olive cake meal (OCM) in the diet of broilers on their growth performance, abdominal fat, selected plasma parameters, and muscle fatty acid (FA) content. A total of 480 one-day-old male broiler chickens (Ross 308) were divided into four treatment groups with 12 replicates/treatment. The control group was fed the base diet, whereas the second to fourth groups were fed diets of corn with 5%, 10%, and 20% contents of OCM, respectively. Broilers fed with the 5% and 10% OCM diets showed better body weight (p = 0.04) and feed conversion ratio than the 20% OCM group (p < 0.048). Both nitrogen retention and ether extract digestibility were not improved by replaced corn with OCM. Replacing corn with OCM led to a decreased abdominal fat percentage (p = 0.023) compared with the control group. Birds in the OCM groups showed the lowest total cholesterol values (p = 0.038). The breast muscle (musculus pectoralis superficialis) content of oleic and linoleic, linolenic, and arachidonic acids was significantly high in birds fed with OCM diets. However, their palmitic acid level was significantly decreased. Vitamin E was increased by increasing the OCM level. Thus, we concluded that replacing corn with OCM, especially at a 10% level, is more effective than other replacement levels in improving growth performance, plasma lipid profile, and muscle FA content, as well as in causing a reduction in abdominal fat in broilers.


2020 ◽  
Author(s):  
Hansapani Rodrigo ◽  
Bryan Martinez ◽  
Roberto De La Garza ◽  
Upal Roy

Abstract Background: HIV Associated Neurological Disorders (HAND) is relatively common among people with HIV-1 infection, even those taking combined antiretroviral treatment (cART). Genome-wide screening of transcription regulation in brain tissue helps in identifying substantial abnormalities present in patients’ gene transcripts and to discover possible biomarkers for HAND. This study explores the possibility of identifying differentially expressed (DE) genes, which can serve as potential biomarkers to detect HAND. In this study, we have investigated the gene expression levels of three subject groups with different impairment levels of HAND along with a control group in three distinct brain sectors: white matter, frontal cortex, and basal ganglia. Methods: Linear models with weighted least squares along with Benjamini-Hochberg multiple corrections were used to identify DE genes in each brain region. Genes with an adjusted p-value of less than 0.01 were identified as differentially expressed. Principal component analyses (PCA) were performed to detect any groupings among the subject groups. Significance Analysis of Microarrays (SAM) and random forests (RF) methods with two distinct approaches were used to identify DE genes. Results: A total of 710 genes in basal ganglia, 794 genes in the frontal cortex, and 1481 genes in white matter were screened. The highest proportion of DE genes was observed within the two brain regions, frontal neocortex, and basal ganglia. PCA analyses do not exhibit clear groupings among four subject groups. SAM and RF models reveal the genes, CIRBP, RBM3, GPNMB, ISG15, IFIT6, IFI6, and IFIT3, to have DE genes in the frontal cortex or basal ganglia among the subject groups. The gene, GADD45A, a protein-coding gene whose transcript levels tend to increase with stressful growth arrest conditions, was consistently ranked among the top genes by both RF models within the frontal cortex. Conclusions: Our study contributes to a comprehensive understanding of the gene expression levels of the subject with different severity levels of HAND. Several genes that appear to play critical roles in the inflammatory response have been found, and they have an excellent potential to be used as biomarkers to detect HAND under further investigations.


2021 ◽  
Vol 4 (1) ◽  
pp. 61-65
Author(s):  
Elahe Esmaeili ◽  
◽  
Sara Ghaffarpour ◽  
Alireza Sadeghipour ◽  
Tooba Ghazanfari ◽  
...  

Background: Finding a sample of healthy tissue is a critical challenge in research studies. Non-pathological Tissue adjacent to the tumor (NAT) specimens is usually used as the control in several studies. However, little is known about the similarity of NAT to healthy tissues. Here, we compared the expression of Matrix Metalloproteinase 2 (MMP-2) and its inhibitor, Tissue Inhibitors of MMP (TIMP)-1 as extracellular matrix remodeling factors in NAT and autopsy lung tissue. Materials and Methods: RNA of 7 NAT and 6 Formalin-Fixed Paraffin-Embedded (FFPE) lung autopsies from healthy people as the control group was extracted, and cDNA was synthesized. The gene expression levels of MMP-2 and TIMP-1 were evaluated by real-time PCR. Results: There were no significant differences in the expression of MMP-2, TIMP-1, or their ratio between the two groups. Conclusion: The results showed that NAT could be used as healthy controls in lung tissue studies for MMP-2 and TIMP-1.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 2037 ◽  
Author(s):  
Petra Kroupova ◽  
Evert M. van Schothorst ◽  
Jaap Keijer ◽  
Annelies Bunschoten ◽  
Martin Vodicka ◽  
...  

Antisteatotic effects of omega-3 fatty acids (Omega-3) in obese rodents seem to vary depending on the lipid form of their administration. Whether these effects could reflect changes in intestinal metabolism is unknown. Here, we compare Omega-3-containing phospholipids (krill oil; ω3PL-H) and triacylglycerols (ω3TG) in terms of their effects on morphology, gene expression and fatty acid (FA) oxidation in the small intestine. Male C57BL/6N mice were fed for 8 weeks with a high-fat diet (HFD) alone or supplemented with 30 mg/g diet of ω3TG or ω3PL-H. Omega-3 index, reflecting the bioavailability of Omega-3, reached 12.5% and 7.5% in the ω3PL-H and ω3TG groups, respectively. Compared to HFD mice, ω3PL-H but not ω3TG animals had lower body weight gain (−40%), mesenteric adipose tissue (−43%), and hepatic lipid content (−64%). The highest number and expression level of regulated intestinal genes was observed in ω3PL-H mice. The expression of FA ω-oxidation genes was enhanced in both Omega-3-supplemented groups, but gene expression within the FA β-oxidation pathway and functional palmitate oxidation in the proximal ileum was significantly increased only in ω3PL-H mice. In conclusion, enhanced intestinal FA oxidation could contribute to the strong antisteatotic effects of Omega-3 when administered as phospholipids to dietary obese mice.


2020 ◽  
Vol 4 (3) ◽  
pp. 467-476 ◽  
Author(s):  
Jennifer M. Knight ◽  
J. Douglas Rizzo ◽  
Parameswaran Hari ◽  
Marcelo C. Pasquini ◽  
Karen E. Giles ◽  
...  

Abstract Preclinical research shows that stress-induced activation of the sympathetic nervous system can promote hematopoietic malignancies via β-adrenoreceptor–mediated molecular pathways. Hematopoietic cell transplant (HCT) recipients exposed to conditions of chronic stress show activation of a conserved transcriptional response to adversity (CTRA) gene expression profile, which in turn is associated with increased relapse and decreased disease-free survival. We conducted a randomized controlled phase 2 biomarker trial testing the impact of the nonselective β-antagonist propranolol on CTRA-related gene expression of 25 individuals receiving an autologous HCT for multiple myeloma. Propranolol was administered for 1 week prior to and 4 weeks following HCT. Blood was collected at baseline, day −2, and day +28. Intention-to-treat analyses controlling for demographic characteristics, high-risk disease (International Myeloma Working Group risk score), and tumor stage tested effects on a 53-gene CTRA indicator profile and measures of CTRA-related cellular processes in peripheral blood mononuclear cells. Twelve participants were randomized to the intervention and 13 to the control. Relative to the control group, propranolol-treated patients showed greater decreases from baseline to HCT day −2 and day +28 for both CTRA gene expression (P = .017) and bioinformatic measures of CD16− classical monocyte activation (P = .005). Propranolol-treated patients also showed relative upregulation of CD34+ cell–associated gene transcripts (P = .011) and relative downregulation of myeloid progenitor–containing CD33+ cell–associated gene transcripts (P = .001). Ancillary analyses identified nonsignificant trends toward accelerated engraftment and reduced posttransplant infections in propranolol-treated patients. Peri-HCT propranolol inhibits cellular and molecular pathways associated with adverse outcomes. Changes in these pathways make propranolol a potential candidate for adjunctive therapy in cancer-related HCT.


2017 ◽  
Vol 26 (04) ◽  
pp. 218-222
Author(s):  
S. Shafiee ◽  
F. Noorabad-Ghahroodi ◽  
A. Amirfarhangi ◽  
S. Hosseini-Fard ◽  
Z. Sharifi ◽  
...  

AbstractNeointimal hyperplasia is known as a main factor contributing to in-stent restenosis (ISR). Monocytes may play a central role in vessel restenosis process after stent implantation. The aim of this study was to investigate the relationships between the urokinase-type plasminogen activator (PLAU) and vitronectin (Vtn) gene expression levels in peripheral blood mononuclear cell samples isolated from whole blood of 66 patients undergoing coronary artery angiography (22 controls, stenosis < 0.05%; 22 with stent no-restenosis and stenosis < 70%; and 22 with ISR and stenosis > 70%). The Vtn and PLAU gene expression levels were measured by real-time quantitative polymerase chain reaction technique. The age- and gender-independent increases in the expression levels of Vtn (17-fold; p < 0.001) and PLAU (27-fold; p < 0.0001) genes were found in the patients with ISR as compared with the control group. The results suggested that the Vtn and PLAU genes may be involved in the coronary artery ISR.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
M. Ebrahimi ◽  
M. A. Rajion ◽  
Y. M. Goh ◽  
A. Q. Sazili ◽  
J. T. Schonewille

This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing highα-linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR)α, PPAR-γ, and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P<0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR-γ(P<0.05) but downregulated the expression of SCD (P<0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).


2018 ◽  
Vol 42 (1-2) ◽  
pp. 23-29
Author(s):  
Sayed R. Hosseini-Fard ◽  
Mohsen Khosravi ◽  
Amaneh Yarnazari ◽  
Parisa Hassanpour ◽  
Abdollah Amirfarhangi ◽  
...  

AbstractBackground:The metabolism of cholesteryl esters (CEs) is under the control of a gene network in macrophages. Several genes such asATF3andEGR2are related to cholesterol metabolism.Methods:In this study, theATF3andEGR2gene expression levels were evaluated in differentiated macrophages of subjects undergoing coronary artery angiography [controls (<5% stenosis), patients (>70% stenosis)] after treatment with small dense low density lipoprotein (sdLDL) particles. Monocytes were isolated using a RosetteSep Kit and were differentiated into macrophages using the M-CSF factor. A modified heparin-MgSO4-PEG method was used for the sdLDL preparation. TheATF3andEGR2gene expression levels were measured by the real-time quantitative polymerase chain reaction (RT-qPCR) technique.Results:In contrast with the control group (p=0.4), theATF3expression level reduced significantly in the differentiated macrophages from all patients [single vessel disease (SVD), fold change 17 times, p=0.02; two vessel disease (2VD), fold change 1.5 times, p=0.05; three vessel disease (3VD), fold change 3.5 times, p=0.04]. Also, theEGR2expression level reduced significantly in all groups (p<0.02). The gene fold changes had no significant differences between the patients (p>0.8).Conclusions:We propose that the failure ofATF3gene expression improves the CE synthesis after sdLDL influx. Furthermore, the reducedEGR2gene expression level in the sdLDL-treated groups may be a negative factor in cholesterol homeostasis.


2017 ◽  
Vol 5 (2) ◽  
Author(s):  
Fajar M. Nasution ◽  
Rina S. Mardia ◽  
Ayu Azri ◽  
Rido R. Hutabarat ◽  
Fadhila Al. Izza ◽  
...  

Abstract: Squid ink consists of DHI, DHICA, and 2-carboxyl indole that improve lipid profile and remove foam cells in blood vessel walls. This study was aimed to analyze the effect of squid ink on atherosclerosis-induced Wistar rats. This was an experimental study. We used randomized controlled trial with pre-post test design for lipid profile assessment and randomized post-test only control design for blood vessel evaluation (foam cells in layers of coronary artery). Samples were 27 Wistar rats, divided into three groups; all were atherosclerosis-induced with initial injection of 0.006mg iv adrenalin on day 1, followed by standard diet and egg yolk until day 30. Squid ink extract was given to group P1 and P2 on days 15-30 in different doses, but not to control group. Data were analyzed by using Saphiro-Wilk test and paired t-test. The results showed that P2 group had decreased means of total cholesterol (-33.62 mg/dl), triglyceride (-28.00 mg/dl), and LDL cholesterol (-28.16 mg/dl), but an increased mean of HDL cholesterol (11.60 mg/dl). There were decreased numbers of foam cells in the layers of coronary arteries of P1 and P2 group compared to the control group. Conclusion: Squid ink extract could lower total cholesterol, triglyceride, and LDL cholesterol levels, and increase HDL cholesterol level. Moreover, it could remove foam cells from the layers of coronary arteries.Keywords: squid ink, atherosclerosis, lipid profile, foam cells Asbtrak: Tinta cumi memiliki kandungan DHI, DHICA, dan 2-carboxyl indole yang dapat memperbaiki profil lipid dan mengurangi sel busa pembuluh darah. Penelitian ini bertujuan untuk mengetahui pengaruh pemberian ekstrak tinta cumi terhadap tikus yang diinduksi aterosklerosis. Jenis penelitian ialah eksperimental dengan randomized controlled with pre-post test design untuk penilaian profil lipid dan post test only design untuk penilaian pembuluh darah (sel busa dalam dinding arteri koronaria). Sampel terdiri dari 27 tikus Wistar jantan, dibagi secara random menjadi tiga kelompok; kesemuanya diberi induksi aterosklerosis dengan injeksi inisial adrenalin 0,006 mg iv pada hari ke-1, dilanjutkan diet standar dan diet kuning telur sampai hari ke-30. Tikus kelompok kontrol tidak diberikan ekstrak tinta cumi; tikus kelompok perlakuan 1 dan perlakuan 2 diberikan tambahan ekstrak tinta cumi pada hari ke 16 sampai hari ke 30 dengan dosis yang berbeda. Analisis data dengan uji Saphiro-Wilk dan uji paired t-test. Hasil penelitian memperlihatkan penurunan rerata setelah perlakuan pada kelompok P2 ialah kolesterol total (-33,62 mg/dl), trigliserida (-28,00 mg/dl), dan kolesterol LDL (-28,16 mg/dl), serta peningkatan rerata kolesterol HDL (11,60 mg/dl). Terdapat penurunan jumlah sel busa kelompok perlakuan P1 dan P2 dibandingkan kelompok kontrol. Simpulan: Pemberian ekstrak tinta cumi menurunkan kadar kolesterol total, trigliserida dan kolesterol LDL, meningkatkan kadar kolesterol HDL, serta menurunkan jumlah sel busa dalam dinding arteri koronaria.Kata kunci: tinta cumi, aterosklerosis, profil lipid, sel busa


Sign in / Sign up

Export Citation Format

Share Document