scholarly journals Optimisation of Wearable Thermoelectric Generators

2019 ◽  
Vol 6 ◽  
pp. 2-15 ◽  
Author(s):  
Alexander P Condos ◽  
Leo Zimaras ◽  
Jacob Marlow ◽  
Mutiara Kurniawan

This meta-study explores some factors that can potentially affect the efficiency of a wearable thermoelectric generator. These include, but are not limited to; doping percentage, manufacturing technology, thermocouple length, area, use of heat spreaders, material, airflow and specific position on the human body. These specific designs and materials have been reviewed in this paper and specific variables have been proposed to ensure greater efficiency. In this meta- study, Bi0.5Sb1.5Te3 and Ag2Se are found to be the most effective materials, with PVD as the most effective manufacturing method. A broad temperature differential generates greater power output. Practically, a condition where there is a difference in temperature of more than 40K between the body and its environment in the application of wearable thermoelectric devices is unlikely. Despite this, a temperature difference below 40K, although small, is extremely feasible and would be able to enough power to keep intended wearable thermoelectric devices running at a constant. Keywords: Thermoelectric; Seebeck Effect; Peltier; TEG; ZT; Wearable

2010 ◽  
Vol 74 ◽  
pp. 9-14 ◽  
Author(s):  
Vladimir Leonov

The theory of thermal matching of a thermoelectric generator with the environment has been applied in this work to a wearable thermoelectric generator. This enabled evaluation of its top performance characteristics in typical environmental conditions. To correctly perform the modeling, the relevant properties of the human body as a heat generator for a small-size thermoelectric generator have been studied and presented in the paper as well. The results have been practically validated in different wearable thermoelectric generators. In particular, a power over 1 mW per square centimeter of the skin has been practically demonstrated on a walking person at ambient temperature of –2 °C. The comparison with wearable photovoltaic cells shows that in typical situations thermoelectric generators provide at least ten times more power.


2021 ◽  
Author(s):  
JINGYU DAI ◽  
LING DUAN ◽  
HONGYU DAI ◽  
YUTONG XIE

Abstract The present study designs a wearable smart device regarding relationship between temperature and emotion. The device, amplifies, and sub-regionally transmits the current generated by the body temperature thermoelectric generator through a smart body temperature sensor. Different areas of clothing produce controllable and intelligent color, so that adult emotions can be understood through changes in clothing colors, which is conducive to judging their moods and promoting social interaction. Experimental results show that the device can accurately detect changes in human body temperature under hilarious, fearful, soothing, and angry emotions, so as to achieve changes in clothing colors, namely blue, red, green, and brown.


2019 ◽  
pp. 3-13
Author(s):  
Alexandru Cîtea ◽  
George-Sebastian Iacob

Posture is commonly perceived as the relationship between the segments of the human body upright. Certain parts of the body such as the cephalic extremity, neck, torso, upper and lower limbs are involved in the final posture of the body. Musculoskeletal instabilities and reduced postural control lead to the installation of nonstructural posture deviations in all 3 anatomical planes. When we talk about the sagittal plane, it was concluded that there are 4 main types of posture deviation: hyperlordotic posture, kyphotic posture, rectitude and "sway-back" posture.Pilates method has become in the last decade a much more popular formof exercise used in rehabilitation. The Pilates method is frequently prescribed to people with low back pain due to their orientation on the stabilizing muscles of the pelvis. Pilates exercise is thus theorized to help reactivate the muscles and, by doingso, increases lumbar support, reduces pain, and improves body alignment.


Humaniora ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 83-90
Author(s):  
Anak Agung Ayu Wulandari ◽  
Ade Ariyani Sari Fajarwati

The research would look further at the representation of the human body in both Balinese and Javanese traditional houses and compared the function and meaning of each part. To achieve the research aim, which was to evaluate and compare the representation of the human body in Javanese and Balinese traditional houses, a qualitative method through literature and descriptive analysis study was conducted. A comparative study approach would be used with an in-depth comparative study. It would revealed not only the similarities but also the differences between both subjects. The research shows that both traditional houses represent the human body in their way. From the architectural drawing top to bottom, both houses show the same structure that is identical to the human body; head at the top, followed by the body, and feet at the bottom. However, the comparative study shows that each area represents a different meaning. The circulation of the house is also different, while the Balinese house is started with feet and continued to body and head area. Simultaneously, the Javanese house is started with the head, then continued to body, and feet area.


2021 ◽  
pp. 1354067X2110040
Author(s):  
Josefine Dilling ◽  
Anders Petersen

In this article, we argue that certain behaviour connected to the attempt to attain contemporary female body ideals in Denmark can be understood as an act of achievement and, thus, as an embodiment of the culture of achievement, as it is characterised in Præstationssamfundet, written by the Danish sociologist Anders Petersen (2016) Hans Reitzels Forlag . Arguing from cultural psychological and sociological standpoints, this article examines how the human body functions as a mediational tool in different ways from which the individual communicates both moral and aesthetic sociocultural ideals and values. Complex processes of embodiment, we argue, can be described with different levels of internalisation, externalisation and materialisation, where the body functions as a central mediator. Analysing the findings from a qualitative experimental study on contemporary body ideals carried out by the Danish psychologists Josefine Dilling and Maja Trillingsgaard, this article seeks to anchor such theoretical claims in central empirical findings. The main conclusions from the study are used to structure the article and build arguments on how expectations and ideals expressed in an achievement society become embodied.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayukh Nath ◽  
Shovan Maity ◽  
Shitij Avlani ◽  
Scott Weigand ◽  
Shreyas Sen

AbstractRadiative communication using electromagnetic fields is the backbone of today’s wirelessly connected world, which implies that the physical signals are available for malicious interceptors to snoop within a 5–10 m distance, also increasing interference and reducing channel capacity. Recently, Electro-quasistatic Human Body Communication (EQS-HBC) was demonstrated which utilizes the human body’s conductive properties to communicate without radiating the signals outside the body. Previous experiments showed that an attack with an antenna was unsuccessful at a distance more than 1 cm from the body surface and 15 cm from an EQS-HBC device. However, since this is a new communication modality, it calls for an investigation of new attack modalities—that can potentially exploit the physics utilized in EQS-HBC to break the system. In this study, we present a novel attack method for EQS-HBC devices, using the body of the attacker itself as a coupling surface and capacitive inter-body coupling between the user and the attacker. We develop theoretical understanding backed by experimental results for inter-body coupling, as a function of distance between the subjects. We utilize this newly developed understanding to design EQS-HBC transmitters that minimizes the attack distance through inter-body coupling, as well as the interference among multiple EQS-HBC users due to inter-body coupling. This understanding will allow us to develop more secure and robust EQS-HBC based body area networks in the future.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
John Mativo ◽  
Kevin Hallinan ◽  
Uduak George ◽  
Greg Reich ◽  
Robin Steininger

Abstract Typical thermoelectric generator legs are brittle which limits their application in vibratory and shear environments. Research is conducted to develop compliant thermoelectric generators (TEGs) capable of converting thermal loads to power, while also supporting shear and vibratory loads. Mathematical structural, thermal, and power conversion models are developed. Topology optimization is employed to tailor the TEG design yield maximal power production while sustaining the applied shear and vibratory loads. As a specific example, results are presented for optimized TEG legs with a void volume fraction of 0.2 that achieve compliance shear displacement of 0.0636 (from a range of 0.0504 to 0.6079). In order to achieve the necessary compliance to support the load, the power reduction is reduced by 20% relative to similarly sized void free TEG legs.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1431
Author(s):  
Ilkyu Kim ◽  
Sun-Gyu Lee ◽  
Yong-Hyun Nam ◽  
Jeong-Hae Lee

The development of biomedical devices benefits patients by offering real-time healthcare. In particular, pacemakers have gained a great deal of attention because they offer opportunities for monitoring the patient’s vitals and biological statics in real time. One of the important factors in realizing real-time body-centric sensing is to establish a robust wireless communication link among the medical devices. In this paper, radio transmission and the optimal characteristics for impedance matching the medical telemetry of an implant are investigated. For radio transmission, an integral coupling formula based on 3D vector far-field patterns was firstly applied to compute the antenna coupling between two antennas placed inside and outside of the body. The formula provides the capability for computing the antenna coupling in the near-field and far-field region. In order to include the effects of human implantation, the far-field pattern was characterized taking into account a sphere enclosing an antenna made of human tissue. Furthermore, the characteristics of impedance matching inside the human body were studied by means of inherent wave impedances of electrical and magnetic dipoles. Here, we demonstrate that the implantation of a magnetic dipole is advantageous because it provides similar impedance characteristics to those of the human body.


Nuncius ◽  
2011 ◽  
Vol 26 (1) ◽  
pp. 21-49
Author(s):  
Dario De Santis

AbstractThe scientific debate which developed during the eighteenth century, proposed and diffused new theories on the generation not only within the scientific community. Microscopic investigation and various experimental campaigns fostered daring models attempting to unveil the natural phenomena from which life originates. Besides the famous scientific and philosophical works that marked the age, in the second part of the century two pamphlets appeared that well represent the importance of the querelle about embryological systems defining the concept of generation as a voyage within the human body. Lucina sine concubitu and Juno abortans, respectively published in England and in Germany between 1750 and 1760, narrate the odd and imaginary adventures of two doctors who are trying to interrupt and modify the embryos' journey towards the body of the mother.


2016 ◽  
Vol 164 ◽  
pp. 57-63 ◽  
Author(s):  
Zhisong Lu ◽  
Huihui Zhang ◽  
Cuiping Mao ◽  
Chang Ming Li

Sign in / Sign up

Export Citation Format

Share Document