Non-Thermal Food Preservation: Control of Food-Borne Pathogens through Active Food Packaging and Nanotechnology

2015 ◽  
pp. 499-510 ◽  
Author(s):  
Paula Judith Perez Espitia ◽  
Rejane Andrade Batista
2021 ◽  
pp. 147-185
Author(s):  
Divya Sachdev ◽  
Akanksha Joshi ◽  
Neetu Kumra Taneja ◽  
Renu Pasricha

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 560 ◽  
Author(s):  
Tianqi Huang ◽  
Yusheng Qian ◽  
Jia Wei ◽  
Chuncai Zhou

Food corruption and spoilage caused by food-borne pathogens and microorganisms is a serious problem. As a result, the demand for antibacterial drugs in food packaging is growing. In this review, biodegradable and non-biodegradable materials for food packaging are discussed based on their properties. Most importantly, antibacterial agents are essential to inhibit the growth of bacteria in food. To keep food fresh and prolong the shelf life, different kinds of antibacterial agents were used. The composition and application of natural antibacterial agents and synthetic antibacterial agents are discussed. Compared with natural antibacterial agents, synthetic antibacterial agents have the advantages of low cost and high activity, but their toxicity is usually higher than that of natural antibacterial agents. Finally, future development of antimicrobial food packaging is proposed. It is an urgent problem for researchers to design and synthesize antibacterial drugs with high efficiency and low toxicity.


Author(s):  
T. Raviteja ◽  
Susan Kanthi Dayam ◽  
J. Yashwanth

Cold plasma is an electrically energized matter composed of highly reactive species which includes molecules of charged and gas with minute particle in the form of negative and positive ions, photons electrons, free radicals at room temperature. It is an emerging technology in non-thermal food preservation in the application of sterilization. An increase in the plasma-based treatment for food is employed to inactivate the food borne pathogens seen in the recent years. The present study recollects the activity of the plasma agents on the microbe population, surface decontamination of the raw produce in the food processing and future novelty in food technology.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4198
Author(s):  
Nagaraj Basavegowda ◽  
Kwang-Hyun Baek

Polymeric nanocomposites have received significant attention in both scientific and industrial research in recent years. The demand for new methods of food preservation to ensure high-quality, healthy foods with an extended shelf life has increased. Packaging, a crucial feature of the food industry, plays a vital role in satisfying this demand. Polymeric nanocomposites exhibit remarkably improved packaging properties, including barrier properties, oxygen impermeability, solvent resistance, moisture permeability, thermal stability, and antimicrobial characteristics. Bio-based polymers have drawn considerable interest to mitigate the influence and application of petroleum-derived polymeric materials and related environmental concerns. The integration of nanotechnology in food packaging systems has shown promise for enhancing the quality and shelf life of food. This article provides a general overview of bio-based polymeric nanocomposites comprising polymer matrices and inorganic nanoparticles, and describes their classification, fabrication, properties, and applications for active food packaging systems with future perspectives.


2006 ◽  
Vol 73 (1) ◽  
pp. 211-217 ◽  
Author(s):  
M. Ann S. McMahon ◽  
Jiru Xu ◽  
John E. Moore ◽  
Ian S. Blair ◽  
David A. McDowell

ABSTRACT This study investigated the possibility that sublethal food preservation stresses (high or low temperature and osmotic and pH stress) can lead to changes in the nature and scale of antibiotic resistance (ABR) expressed by three food-related pathogens (Escherichia coli, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus). The study found that some sublethal stresses significantly altered antibiotic resistance. Incubation at sublethal high temperature (45°C) decreased ABR. Incubation under increased salt (>4.5%) or reduced pH (<5.0) conditions increased ABR. Some of the pathogens continued to express higher levels of ABR after removal of stress, suggesting that in some cases the applied sublethal stress had induced stable increases in ABR. These results indicate that increased use of bacteriostatic (sublethal), rather than bactericidal (lethal), food preservation systems may be contributing to the development and dissemination of ABR among important food-borne pathogens.


2021 ◽  
Vol 22 (15) ◽  
pp. 7892
Author(s):  
Ondrej Chlumsky ◽  
Sabina Purkrtova ◽  
Hana Michova ◽  
Hana Sykorova ◽  
Petr Slepicka ◽  
...  

Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3–2.4 (PdNPs) and 0.8–2.0 (PtNPs), average inhibitory rates of 55.2–99% for PdNPs and of 83.8–99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25–44.5 mg/L for PdNPs and 50.5–101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2665
Author(s):  
Swarup Roy ◽  
Jong-Whan Rhim

Edible biopolymer (pullulan/carrageenan) based functional composite films were fabricated by the addition of copper sulfide nanoparticles (CuSNP) and D-limonene (DL). The DL and CuSNP were compatible with the pullulan/carrageenan biopolymer matrix. The addition of CuSNP significantly increased the UV-blocking properties without substantially reducing the transparency of the film. The addition of CuSNP improved the film’s tensile strength by 10%; however, the DL addition did not significantly influence the strength, while the combined addition of CuSNP and DL increased the strength by 15%. The addition of the fillers did not significantly affect the thermal stability of the film, but the water vapor barrier property was slightly improved. There was no significant change in the moisture content and hydrophobicity of the composite film. Besides, the composite film showed some antimicrobial activity against food-borne pathogenic bacteria. The fabricated pullulan/carrageenan-based film with antimicrobial and UV-barrier properties is likely to be used in active food packaging applications.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 216
Author(s):  
Cristina Cejudo-Bastante ◽  
Paloma Arjona-Mudarra ◽  
María Teresa Fernández-Ponce ◽  
Lourdes Casas ◽  
Casimiro Mantell ◽  
...  

There is an increasing demand for the use of new food packaging materials. In this study, natural jute fibers impregnated with a Petit Verdot Red Grape Pomace Extract (RGPE) was proposed as a new active food packaging material. Pressurized Liquid Extraction (PLE) and Enhanced Solvent Extraction (ESE) techniques were employed to obtain the bioactive RGPE. Afterward the supercritical solvent impregnation conditions to obtain RGPE-natural jute fibers were studied, by varying pressure, modifier percentage and dried RGPE mass. PLE technique offered the highest bioactive extract at 20 MPa, 55 °C, 1 h residence time using C2H5OH:H2O (1:1 v/v), providing an EC50 of 3.35 ± 0.25 and antibacterial capacity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (MIC of 12.0, 1.5 and 4.0 mg/mL RGPE respectively). The natural jute fibers impregnated with 3 mL of that RGPE (90 mg/mL) at 50 MPa and 55 °C generated the most efficient packing material with regards to its food preservation potential.


2020 ◽  
pp. 089270572096215 ◽  
Author(s):  
Sajed Amjadi ◽  
Saghar Nouri ◽  
Roghieh Ashrafi Yorghanlou ◽  
Leila Roufegarinejad

The present study aimed to fabrication and characterization the hydroxypropyl methylcellulose (HPMC) films containing different concentrations of sodium alginate (0.5, 1, and 3% v/v) and Dracocephalum moldavica L. essential oil (DEO; 1, 3 and 5% v/v) as a biodegradable active packaging system. FTIR analysis confirmed the interaction of alginate groups with the hydroxyl group of HPMC. SEM images indicated that the addition of alginate decreased the size and number of the cracks. As a result, the incorporation of alginate and DEO significantly (p < 0.05) improved the water barrier properties of films and the lowest values of water vapor permeability (.38 × 10−10 g/m·h·Pa), moisture content (6.30 ± 0.08%) and water solubility (29.49 ± 0.04%) were related to the sample containing 1.5% alginate and 5% DEO. Additionally, blending with alginate significantly (p < 0.05) improved the mechanical properties of the films and the blended film sample with 0.5% alginate showed the highest tensile strength (16.13 MPa). The blend films showed high thickness and whiteness Index. Also, the antioxidant activity of the films was enhanced by incorporation DEO and the highest DPPH scavenging activity (74.58 ± 2.31%) was attributed to the samples incorporated with 5% DEO. In conclusion, the fabricated blend film showed considerable potential for active food packaging.


Food systems ◽  
2022 ◽  
Vol 4 (4) ◽  
pp. 255-258
Author(s):  
A. S. Ammar ◽  
W. A. Bazaraa

In the past two decades, nano-science is widely used in different applications and the increased interest in the utilization of nanoparticles in food processing is clear. Such applications include processing, packaging, development of functional food, safety, foodborne pathogens detection, and shelf-life extension. In this article, the essential facts and the latest uses of nano-science in fruit and vegetable juices were described. The green synthesis of nanoparticles with antioxidant, antibacterial and antifungal characteristics is of great interest in food preservation. These nanoparticles such as metals, oxidized metals and its bioactivity in juice were reviewed. The current procedures to prepare nanojuice including nanofiltration and the most recent nanomilling were presented. Beside the preparation, special emphasis has also been given to the chemical as well as the biological (microbial and enzymatic) quality of the produced nanojuice. The role of nanotechnology in the development of the smart and the active food packaging systems for the improvement of food shelf- life and quality was also discussed. Since the physical and chemical characteristics of nanoparticles are completely different from those of macro-size. Therefore, special and urgent attention by responsible authorities should be given and effective policies should be applied for food products to ensure product quality, customer health and safety as well as the environmental protection.


Sign in / Sign up

Export Citation Format

Share Document