Role of Silicon in Enrichment of Plant Nutrients and Protection from Biotic and Abiotic Stresses

Author(s):  
Durgesh Kumar Tripathi ◽  
Vijay Pratap Singh ◽  
Savita Gangwar ◽  
Sheo Mohan Prasad ◽  
Jagat Narayan Maurya ◽  
...  
2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Fangwei Yu ◽  
Shenyun Wang ◽  
Wei Zhang ◽  
Hong Wang ◽  
Li Yu ◽  
...  

Abstract The members of myeloblastosis transcription factor (MYB TF) family are involved in the regulation of biotic and abiotic stresses in plants. However, the role of MYB TF in phosphorus remobilization remains largely unexplored. In the present study, we show that an R2R3 type MYB transcription factor, MYB103, is involved in phosphorus (P) remobilization. MYB103 was remarkably induced by P deficiency in cabbage (Brassica oleracea var. capitata L.). As cabbage lacks the proper mutant for elucidating the mechanism of MYB103 in P deficiency, another member of the crucifer family, Arabidopsis thaliana was chosen for further study. The transcript of its homologue AtMYB103 was also elevated in response to P deficiency in A. thaliana, while disruption of AtMYB103 (myb103) exhibited increased sensitivity to P deficiency, accompanied with decreased tissue biomass and soluble P concentration. Furthermore, AtMYB103 was involved in the P reutilization from cell wall, as less P was released from the cell wall in myb103 than in wildtype, coinciding with the reduction of ethylene production. Taken together, our results uncover an important role of MYB103 in the P remobilization, presumably through ethylene signaling.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1089
Author(s):  
Huimin Ren ◽  
Xiaohong Zhao ◽  
Wenjie Li ◽  
Jamshaid Hussain ◽  
Guoning Qi ◽  
...  

Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 37
Author(s):  
Mohammad Saidur Rhaman ◽  
Shahin Imran ◽  
Farjana Rauf ◽  
Mousumi Khatun ◽  
Carol C. Baskin ◽  
...  

Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.


2021 ◽  
Vol 22 (17) ◽  
pp. 9175
Author(s):  
Asma Ayaz ◽  
Haodong Huang ◽  
Minglü Zheng ◽  
Wajid Zaman ◽  
Donghai Li ◽  
...  

Cutin and wax are the main precursors of the cuticle that covers the aerial parts of plants and provide protection against biotic and abiotic stresses. Long-chain acyl-CoA synthetases (LACSs) play diversified roles in the synthesis of cutin, wax, and triacylglycerol (TAG). Most of the information concerned with LACS functions is obtained from model plants, whereas the roles of LACS genes in Glycine max are less known. Here, we have identified 19 LACS genes in Glycine max, an important crop plant, and further focused our attention on 4 LACS2 genes (named as GmLACS2-1, 2, 3, 4, respectively). These GmLACS2 genes display different expression patterns in various organs and also show different responses to abiotic stresses, implying that these genes might play diversified functions during plant growth and against stresses. To further identify the role of GmLACS2-3, greatly induced by abiotic stresses, we transformed a construct containing its full length of coding sequence into Arabidopsis. The expression of GmLACS2-3 in an Arabidopsis atlacs2 mutant greatly suppressed its phenotype, suggesting it plays conserved roles with that of AtLACS2. The overexpression of GmLACS2-3 in wild-type plants significantly increased the amounts of cutin and suberin but had little effect on wax amounts, indicating the specific role of GmLACS2-3 in the synthesis of cutin and suberin. In addition, these GmLACS2-3 overexpressing plants showed enhanced drought tolerance. Taken together, our study deepens our understanding of the functions of LACS genes in different plants and also provides a clue for cultivating crops with strong drought resistance.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Aqa Mohammadi ◽  
Yan Cheng ◽  
Mohammad Aslam ◽  
Bello Hassan Jakada ◽  
Myat Hnin Wai ◽  
...  

Phosphite (Phi) is a chemical analog of orthophosphate [HPO43−]. It is a systemic pesticide generally known to control the prevalence of oomycetes and soil-borne diseases such as Phytophthora, Pythium, and Plasmopora species. Phi can also control disease symptoms and the spread of pathogenic bacteria, fungi, and nematodes. Phi plays critical roles as a fungicide, pesticide, fertilizer, or biostimulator. Overall, Phi can alleviate the severity of the disease caused by oomycete, fungi, pathogenic bacteria, and nematodes (leave, stem, fruit, tuber, and root) in various plants (vegetables, fruits, crops, root/tuber crops, ornamental plants, and forests). Advance research in molecular, physiological, and biochemical approaches has approved the key role of Phi in enhancing crop growth, quantity, and quality of several plant species. Phi is chemically similar to orthophosphate, and inside the cells, it is likely to get involved in different features of phosphate metabolism in both plants and pathogens. In plants, a range of physiobiochemical alterations are induced by plant pathogen stress, which causes lowered photosynthesis activities, enzymatic activities, increased accumulation of reactive oxygen species (ROS), and modification in a large group of genes. To date, several attempts have been made to study plant-pathogen interactions with the intent to minimize the loss of crop productivity. Phi’s emerging function as a biostimulant in plants has boost plant yield and tolerance against various stress factors. This review discusses Phi-mediated biostimulant effects against biotic and abiotic stresses.


2014 ◽  
Vol 27 (2) ◽  
pp. 177-189 ◽  
Author(s):  
Mazen Alazem ◽  
Kuan-Yu Lin ◽  
Na-Sheng Lin

Accepted 29 October 2013. Abscisic acid (ABA) plays a key role in modulating plant responses to different biotic and abiotic stresses. However, the effect of ABA on virus infection is not fully understood. Here, we describe the effects of the ABA pathway on the accumulation of Bamboo mosaic virus (BaMV) and Cucumber mosaic virus (CMV) in two different hosts: Arabidopsis thaliana and Nicotiana benthamiana. We report that ABA2 plays a critical role in the accumulation of BaMV and CMV. Mutants downstream of ABA2 (aao3, abi1-1, abi3-1, and abi4-1) were susceptible to BaMV, indicating that the ABA pathway downstream of ABA2 is essential for BaMV resistance. The aba2-1 mutant decreased the accumulation of BaMV (+)RNA, (–)RNA, and coat protein, with the most dramatic effect being observed for (–)RNA. These findings were further validated by the use of virus-induced gene silencing and enzyme-linked immunosorbent assay in N. benthamiana. In addition, infecting N. benthamiana with BaMV or CMV increased ABA contents and activated the SA and ABA pathways, thereby disrupting the antagonism between these two cascades. Our findings uncover a novel role for ABA2 in supporting BaMV and CMV accumulation, distinct from the opposing role of its downstream genes.


2011 ◽  
Vol 57 (No. 3) ◽  
pp. 95-100 ◽  
Author(s):  
A.N. Misra ◽  
M. Misra ◽  
R. Singh

Nitric oxide (NO) is a gaseous diatomic molecule with a wide variety of physiological and pathological implications in plants. Presence of unpaired electron in its molecular orbital makes it highly reactive; it can react directly with metal complexes, radicals, DNA, proteins, lipids and other biomolecules. Nitric oxide (NO) and reactive oxygen species (ROS) are known to play essential role in a number of important plant physiological processes. This manuscript reviews the role of NO on these processes during various biotic and abiotic stresses.  


2007 ◽  
Vol 13 (4) ◽  
Author(s):  
E. Szarka ◽  
E. Sárdi ◽  
G. Csilléry ◽  
J. Szarka

Plant breeding for resistance, namely building specific resistance genes into cultivated plants to ensure resistance against certain pathogen species, is a several-decade-long practice. While looking for purposes of failures appearing during the cultivation of varieties created in this way, a plant feature that ensures non-specific reactions against effects which evoke biotic stress attracted our attention. We named this plant defense form the general defense reaction. The general defense reaction is a fundamental attribute of the plant kingdom, fulfils the role of plant immune system and manifests itself in cell enlargement and cell division. Plants with a high level general defense reaction endure abiotic stresses as well. In studying the biochemical background of the interaction of the general defense reaction and transmethylation, we found that transmethylation has important role in warding off both biotic and abiotic stresses. According to our observations, plants possessing high level general defense system are suitable for thorough examination of the process and plant physiological role of transmethylation. Biochemical studies also strengthened our observation, which has been taken on the basis of phenotype, that the general defense system can not be ignored during future plant breeding.


Sign in / Sign up

Export Citation Format

Share Document