The Mechanical Properties and Microstructure of Nanostructured Cu with a Flexible Random Distribution of Multimodal Grain Size Prepared by a Combination of Electrodeposition and Recrystallization Annealing

Author(s):  
Linbo Liu ◽  
Xixun Shen ◽  
Chengwei Deng ◽  
Tao Wang ◽  
Hong Yun ◽  
...  
2016 ◽  
Vol 838-839 ◽  
pp. 392-397 ◽  
Author(s):  
Pavel Kusakin ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev ◽  
Dmitri Molodov

The influence of thermo-mechanical treatment consisting of cold rolling followed by recrystallization annealing on the grain size and mechanical properties of a high-Mn TWIP steel was studied. An Fe-23Mn-0.3C-1.5Al TWIP steel (wt. %) was subjected to extensive cold rolling with a reduction of 80% (true strain of ∼1.6) and then annealed in the temperature interval ranging from 400 to 900 °C during 20 minutes. Recovery processes took place below 500 °C, partial recrystallization was evident at ~550°C and fully recrystallized structure evolved after annealing at 600 °C and higher. The static recovery resulted in a slight decrease in the yield strength from 1400 MPa to 1250 MPa and the ultimate tensile strength from 1540 MPa to 1400 MPa whereas the total elongation of 4% did not changed. The recrystallization development led to a drastic drop of strength and an increase in ductility. The yield strength of 225 MPa, the ultimate tensile strength of 700 MPa and the total elongation of 79% was obtained after annealing at 900 °C. Correspondingly, the grain size increased from 0.2 μm to 6.2 μm with increase in anneal temperature from 550 to 900°C.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 427
Author(s):  
Jiao Meng ◽  
Liuxia Sun ◽  
Yue Zhang ◽  
Feng Xue ◽  
Chenglin Chu ◽  
...  

Static recrystallization plays a key role in the fabrication of thin Mg wires as well as the mechanical properties of the final wires. The effect of annealing parameters on the evolution of the microstructures, textures and mechanical properties of cold-drawn pure Mg wire was studied by means of optical microscopy (OM), electron backscatter diffraction (EBSD), a tensile test and a hardness test. This study shows that the mechanical properties of as-annealed pure thin Mg wire is affected not only by the average grain size, but also the uniformity of the recrystallization grains, including the uniformity of grain size and crystal orientation distribution (more random texture component). With increasing annealing temperature and time, the uniformity of recrystallization grain size first improved and then declined after obvious grain growth. At the same time, the randomness of the basal texture component declined with the development of recrystallization. Annealing at 300 °C for 30 min caused the most uniform grain size and orientation distribution in the microstructures, thus contributing to the best plasticity among all experimental wires. It is reasonable to conclude that more uniform and regular recrystallized grains and a more randomly distributed crystal orientation would be benefit for the mechanical properties of Mg wires.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


Alloy Digest ◽  
1995 ◽  
Vol 44 (5) ◽  

Abstract The Microcast-X process produces a substantially finer grain size that improves mechanical properties in MAR-M-247 with modest negative impact on rupture properties above 1600 F (871 C). This datasheet provides information on composition, microstructureand tensile properties as well as creep and fatigue. It also includes information on casting. Filing Code: Ni-481. Producer or source: Howmet Corporation.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 492
Author(s):  
Jan Foder ◽  
Jaka Burja ◽  
Grega Klančnik

Titanium additions are often used for boron factor and primary austenite grain size control in boron high- and ultra-high-strength alloys. Due to the risk of formation of coarse TiN during solidification the addition of titanium is limited in respect to nitrogen. The risk of coarse nitrides working as non-metallic inclusions formed in the last solidification front can degrade fatigue properties and weldability of the final product. In the presented study three microalloying systems with minor additions were tested, two without any titanium addition, to evaluate grain size evolution and mechanical properties with pre-defined as-cast, hot forging, hot rolling, and off-line heat-treatment strategy to meet demands for S1100QL steel. Microstructure evolution from hot-forged to final martensitic microstructure was observed, continuous cooling transformation diagrams of non-deformed austenite were constructed for off-line heat treatment, and the mechanical properties of Nb and V–Nb were compared to Ti–Nb microalloying system with a limited titanium addition. Using the parameters in the laboratory environment all three micro-alloying systems can provide needed mechanical properties, especially the Ti–Nb system can be successfully replaced with V–Nb having the highest response in tensile properties and still obtaining satisfying toughness of 27 J at –40 °C using Charpy V-notch samples.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4366
Author(s):  
Saqib Anwar ◽  
Ateekh Ur Rehman ◽  
Yusuf Usmani ◽  
Ali M. Al-Samhan

This study evaluated the microstructure, grain size, and mechanical properties of the alloy 800H rotary friction welds in as-welded and post-weld heat-treated conditions. The standards for the alloy 800H not only specify the composition and mechanical properties but also the minimum grain sizes. This is because these alloys are mostly used in creep resisting applications. The dynamic recrystallization of the highly strained and plasticized material during friction welding resulted in the fine grain structure (20 ± 2 µm) in the weld zone. However, a small increase in grain size was observed in the heat-affected zone of the weldment with a slight decrease in hardness compared to the base metal. Post-weld solution heat treatment (PWHT) of the friction weld joints increased the grain size (42 ± 4 µm) in the weld zone. Both as-welded and post-weld solution heat-treated friction weld joints failed in the heat-affected zone during the room temperature tensile testing and showed a lower yield strength and ultimate tensile strength than the base metal. A fracture analysis of the failed tensile samples revealed ductile fracture features. However, in high-temperature tensile testing, post-weld solution heat-treated joints exhibited superior elongation and strength compared to the as-welded joints due to the increase in the grain size of the weld metal. It was demonstrated in this study that the minimum grain size requirement of the alloy 800H friction weld joints could be successfully met by PWHT with improved strength and elongation, especially at high temperatures.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3969
Author(s):  
Shirui Zhang ◽  
Shili Qiu ◽  
Pengfei Kou ◽  
Shaojun Li ◽  
Ping Li ◽  
...  

Granite exhibits obvious meso-geometric heterogeneity. To study the influence of grain size and preferred grain orientation on the damage evolution and mechanical properties of granite, as well as to reveal the inner link between grain size‚ preferred orientation, uniaxial tensile strength (UTS) and damage evolution, a series of Brazilian splitting tests were carried out based on the combined finite-discrete element method (FDEM), grain-based model (GBM) and inverse Monte Carlo (IMC) algorithm. The main conclusions are as follows: (1) Mineral grain significantly influences the crack propagation paths, and the GBM can capture the location of fracture section more accurately than the conventional model. (2) Shear cracks occur near the loading area, while tensile and tensile-shear mixed cracks occur far from the loading area. The applied stress must overcome the tensile strength of the grain interface contacts. (3) The UTS and the ratio of the number of intergrain tensile cracks to the number of intragrain tensile cracks are negatively related to the grain size. (4) With the increase of the preferred grain orientation, the UTS presents a “V-shaped” characteristic distribution. (5) During the whole process of splitting simulation, shear microcracks play the dominant role in energy release; particularly, they occur in later stage. This novel framework, which can reveal the control mechanism of brittle rock heterogeneity on continuous-discontinuous trans-scale fracture process and microscopic rock behaviour, provides an effective technology and numerical analysis method for characterizing rock meso-structure. Accordingly, the research results can provide a useful reference for the prediction of heterogeneous rock mechanical properties and the stability control of engineering rock masses.


Sign in / Sign up

Export Citation Format

Share Document