scholarly journals Genome-Wide Identification and Expression Analysis of AP2/EREBP Transcription Factors in Litchi (Litchi chinensis Sonn.)

Author(s):  
Jia-li Men ◽  
Fang Li ◽  
Jin-hua Sun ◽  
Guo Wang ◽  
Huan-ling Li ◽  
...  

AbstractAPETALA2/ethylene response element binding proteins (AP2/EREBP) are a vital type of TF involved in plant organ development and embryogenesis. In this study we identified 202 Litchi AP2/EREBP TFs from the litchi genome. They were classified into four subfamilies by phylogenetic clustering, including AP2s (20), ERFs (112), DREBs (64), and RAVs (6). Analysis of conserved domains, motifs, gene structure, and genome localization were carried out to investigate the evolutionary features of litchi AP2/EREBPs. Over 35% of DREBs and ERFs involved in the expansion of litchi AP2/EREBPs resulted from tandem duplication. The majority of genomic organizations were conservative, except those of the AP2 subfamily, which had no intron and contained less conservative motif numbers. The expression profiles of litchi AP2/EREBPs in ten tissues were investigated using RNA-Seq data and fifty-nine showed tissue-specific expressions. Their expression patterns were confirmed by qRT-PCR with eight tissues-specificity genes. Six genes related to embryogenesis were identified using the map of orthologous gene interaction between Arabidopsis and litchi. This paper is a comprehensive report on the characteristics of the litchi AP2/EREBP gene superfamily. It will serve to further explore the regulatory mechanisms of AP2/EREBP TFs in the litchi somatic embryogenesis and provide information for litchi molecular breeding.

2021 ◽  
Author(s):  
Jakub Jankowski ◽  
Hye Kyung Lee ◽  
Julia Wilflingseder ◽  
Lothar Hennighausen

SummaryRecently, a short, interferon-inducible isoform of Angiotensin-Converting Enzyme 2 (ACE2), dACE2 was identified. ACE2 is a SARS-Cov-2 receptor and changes in its renal expression have been linked to several human nephropathies. These changes were never analyzed in context of dACE2, as its expression was not investigated in the kidney. We used Human Primary Proximal Tubule (HPPT) cells to show genome-wide gene expression patterns after cytokine stimulation, with emphasis on the ACE2/dACE2 locus. Putative regulatory elements controlling dACE2 expression were identified using ChIP-seq and RNA-seq. qRT-PCR differentiating between ACE2 and dACE2 revealed 300- and 600-fold upregulation of dACE2 by IFNα and IFNβ, respectively, while full length ACE2 expression was almost unchanged. JAK inhibitor ruxolitinib ablated STAT1 and dACE2 expression after interferon treatment. Finally, with RNA-seq, we identified a set of genes, largely immune-related, induced by cytokine treatment. These gene expression profiles provide new insights into cytokine response of proximal tubule cells.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Haitao Xing ◽  
Yusong Jiang ◽  
Yong Zou ◽  
Xiaoling Long ◽  
Xiaoli Wu ◽  
...  

Abstract Background AP2/ERF transcription factors (TFs) constitute one of the largest TF families in plants, which play crucial roles in plant metabolism, growth, and development as well as biotic and abiotic stresses responses. Although the AP2/ERF family has been thoroughly identified in many plant species and several AP2/ERF TFs have been functionally characterized, little is known about this family in ginger (Zingiber officinale Roscoe), an important affinal drug and diet vegetable. Recent completion of the ginger genome sequencing provides an opportunity to investigate the expression profiles of AP2/ERF genes in ginger on a genome-wide basis. Results A total of 163 AP2/ERF genes were obtained in the Z.officinale genome and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. Phylogenetic analysis divided them into three subfamilies, of which 35 belonged to the AP2 subfamily, 120 to ERF, three to RAV, and five to Sololist, respectively, which is in accordance with the number of conserved domains and gene structure analysis. A total of 10 motifs were detected in ZoAP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes. The chromosomal localization, gene structure, and conserved protein motif analyses, as well as the characterization of gene duplication events provided deep insight into the evolutionary features of these ZoAP2/ERF genes. The expression profiles derived from the RNA-seq data and quantitative reserve transcription (qRT-PCR) analysis of ZoAP2/ERFs during development and responses to abiotic stresses were investigated in ginger. Conclusion A comprehensive analysis of the AP2/ERF gene expression patterns in various tissues by RNA-seq and qRT-PCR showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminary identified. In additionally, the ZoAP2/ERF family genes that responded to abiotic stresses were also identified. This study is the first time to identify the ZoAP2/ERF family, which contributes to research on evolutionary characteristics and better understanding the molecular basis for development and abiotic stress response, as well as further functional characterization of ZoAP2/ERF genes with an aim of ginger crop improvement.


2019 ◽  
Author(s):  
Lanjie Zhao ◽  
Youjun Lu ◽  
Wei Chen ◽  
Jinbo Yao ◽  
Yan Li ◽  
...  

Abstract Background: Members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED ( AHL ) family are involved in various plant biological processes via protein-DNA and protein-protein interaction. However, no the systematic identification and analysis of AHL gene family have been reported in cotton. Results: To investigate the potential functions of AHLs in cotton, genome-wide identification, expressions and structure analysis of the AHL gene family were performed in this study. 48, 51 and 99 AHL genes were identified from the G.raimondii, G.arboreum and G.hirsutum genome, respectively. Phylogenetic analysis revealed that the AHLs in cotton evolved into 2 clades, Clade-A with 4-5 introns and Clade-B with intronless (excluding AHL 20-2). Based on the composition of the AT-hook motif(s) and PPC/DUF 296 domain, AHL proteins were classified into three types (Type-I/-II/-III), with Type-I AHLs forming Clade-B, and the other two types together diversifying in Clade-A. The detection of synteny and collinearity showed that the AHLs expanded with the WGD in cotton, and the sequence structure of AHL20-2 showed the tendency of increasing intron in three different Gossypium spp . The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of orthologous gene pairs revealed that the AHL genes of G.hirsutum had undergone through various selection pressures, purifying selection mainly in A-subgenome and positive selection mainly in D-subgenome. Examination of their expression patterns showed most of AHLs of Clade-B expressed predominantly in stem, while those of Clade-A in ovules, suggesting that the AHLs within each clade shared similar expression patterns with each other. qRT-PCR analysis further confirmed that some GhAHLs higher expression in stems and ovules. Conclusion: In this study, 48, 51 and 99 AHL genes were identified from three cotton genomes respectively. AHLs in cotton were classified into two clades by phylogenetic relationship and three type based on the composition of motif and domain. The AHLs expanded with segmental duplication, not tandem duplication. The expression profiles of GhAHLs revealed abundant differences in expression levels in various tissues and at different stages of ovules development. Our study provided significant insights into the potential functions of AHLs in regulating the growth and development in cotton.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yani Dong ◽  
Likang Lyu ◽  
Haishen Wen ◽  
Bao Shi

Long noncoding RNAs (lncRNAs) have been identified to be involved in half-smooth tongue sole (Cynoglossus semilaevis) reproduction. However, studies of their roles in reproduction have focused mainly on the ovary, and their expression patterns and potential roles in the brain and pituitary are unclear. Thus, to explore the mRNAs and lncRNAs that are closely associated with reproduction in the brain and pituitary, we collected tongue sole brain and pituitary tissues at three stages for RNA sequencing (RNA-seq), the 5,135 and 5,630 differentially expressed (DE) mRNAs and 378 and 532 DE lncRNAs were identified in the brain and pituitary, respectively. The RNA-seq results were verified by RT-qPCR. Moreover, enrichment analyses were performed to analyze the functions of DE mRNAs and lncRNAs. Interestingly, their involvement in pathways related to metabolism, signal transduction and endocrine signaling was revealed. LncRNA-target gene interaction networks were constructed based on antisense, cis and trans regulatory mechanisms. Moreover, we constructed competing endogenous RNA (ceRNA) networks. In summary, this study provides mRNA and lncRNA expression profiles in the brain and pituitary to understand the molecular mechanisms regulating tongue sole reproduction.


2019 ◽  
Author(s):  
Lanjie Zhao ◽  
Youjun Lu ◽  
Wei Chen ◽  
Jinbo Yao ◽  
Yan Li ◽  
...  

Abstract Background: Members of the AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) family are involved in various plant biological processes via protein-DNA and protein-protein interaction. However, the systematic identification and analysis of AHL gene family have yet not to be reported in cotton. Results: To investigate the potential functions of AHLs in cotton, genome-wide identification, expressions and structure analysis of the AHL gene family were performed in this study. 48, 51 and 99 AHL genes were identified from the G.raimondii, G.arboreum and G.hirsutum genome respectively. Phylogenetic trees showed that the AHLs in cotton evolved into 2 clades, Clade-A with 4-5 introns and Clade-B with intronless (excluding AHL20-2). Based on the composition of the AT-hook motif(s) and PPC/DUF 296 domain, AHL proteins were classified into three types (Type-I/-II/-III), with Type-I AHLs forming Clade-B, and the other two types together diversifying in Clade-A. The detection of synteny and collinearity showed that the AHLs expanded with specific WGD in cotton, and AHL20-2 showed the tendency of increasing intron in three different Gossypium spp. The ratios of non-synonymous (Ka) and synonymous (Ks) substitution rates of orthologous gene pairs revealed that the AHL genes of G.hirsutum had undergone through various selection pressures, purifying selection mainly in A-subgenome and positive selection mainly in D-subgenome. Examination of their expression patterns showed most of AHLs of Clade-B expressed predominantly in stem, while those of Clade-A in ovules, suggesting that the AHLs within each clade shared similar expression patterns with each other. qRT-PCR analysis further confirmed that some GhAHLs higher expression in stems and ovules. Conclusion: In this study, 48, 51 and 99 AHL genes were identified from three cotton genomes respectively. AHLs in cotton were classified into two clades by phylogenetic relationship and three type based on the composition of motif and domain. The AHLs expanded with segmental duplication, not tandem duplication. The expression profiles of GhAHLs revealed abundant differences in expression levels in various tissues and at different stages of ovules development. Our study provided significant insights into the potential functions of AHLs in regulating the growth and development in cotton.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ying Li ◽  
Qilu Song ◽  
Yamin Zhang ◽  
Zheng Li ◽  
Jialin Guo ◽  
...  

Abstract SQUAMOSA promoter-binding protein (SBP)-box genes encode a family of plant-specific transcription factors that play roles in plant growth and development. The characteristics of SBP-box genes in rice (Oryza sativa) and Arabidopsis have been reported, but their potential roles in wheat (Triticum aestivum) are not fully understood. In this study, 48 SBP-box genes (TaSBPs) were identified; they were located in all wheat chromosomes except for 4B and 4D. Six TaSBPs were identified as tandem duplication genes that formed three tandem duplication pairs, while 22 were segmentally duplicated genes that formed 16 segmental duplication pairs. Subcellular localization prediction showed TaSBPs were located in nucleus. Among the 48 TaSBPs, 24 were predicted to be putative targets of TamiR156. Phylogenetic analysis showed that TaSBPs, AtSBPs, and OsSBPs that shared similar functions were clustered into the same subgroups. The phylogenetic relationships between the TaSBPs were supported by the identification of highly conserved motifs and gene structures. Four types of cis-elements––transcription-related, development-related, hormone-related, and abiotic stress-related elements––were found in the TaSBP promoters. Expression profiles indicated most TaSBPs participate in flower development and abiotic stress responses. This study establishes a foundation for further investigation of TaSBP genes and provides novel insights into their biological functions.


2020 ◽  
Author(s):  
Sadhana Singh ◽  
Himabindu Kudapa ◽  
Vanika Garg ◽  
Rajeev Varshney

Abstract Background: Chickpea, pigeonpea, and groundnut are the primary crop legumes of semi-arid tropics (SAT) and their global productivity is severely affected by drought stress. The plant-specific NAC (NAM - no apical meristem, ATAF - Arabidopsis transcription activation factor, and CUC - cup-shaped cotyledon) transcription factor family is known to be involved in majority of abiotic stresses, especially in the drought stress tolerance mechanism. – Results: In this study, genome-wide NAC proteins – 72, 96, and 166 – have been identified from the genomes of chickpea, pigeonpea, and groundnut, respectively. Phylogeny with well-known stress-responsive NACs in Arabidopsis thaliana, Oryza sativa (rice), Medicago truncatula, and Glycine max (soybean) enabled prediction of putative stress-responsive NACs in chickpea (22), pigeonpea (31), and groundnut (33). On exploring the available transcriptome data of each of these legumes, putative stress-responsive NACs at various developmental stages revealed differential expression patterns in the different tissues studied. Quantitative real-time PCR (qRT-PCR) was performed to validate the expression patterns of selected stress-responsive, Ca_NAC (Cicer arietinum - 14), Cc_NAC (Cajanus cajan - 15), and Ah_NAC (Arachis hypogaea - 14) genes using drought-stressed and well-watered root tissues from two contrasting drought-responsive genotypes of each of the three legumes. Based on expression analysis, 10/14 Ca_NACs (Ca_06899, Ca_18090, Ca_22941, Ca_04337, Ca_04069, Ca_04233, Ca_12660, Ca_16379, Ca_16946, and Ca_21186); 6/15 Cc_NACs (Cc_26125, Cc_43030, Cc_43785, Cc_43786, Cc_22429, and Cc_22430); 5/14 Ah_NACs (Ah_ann1.G1V3KR.2, Ah_ann1.MI72XM.2, Ah_ann1.V0X4SV.1, Ah_ann1.FU1JML.2, and Ah_ann1.8AKD3R.1) were identified as potential drought stress-responsive candidate genes. Conclusion: In the present study, comprehensive genome-wide identification and expression analyses of the NAC proteins have been carried out in chickpea, pigeonpea and groundnut. Based on the genome sequence, we analyzed phylogenetic association, structural characteristics, promoter analysis, gene interaction networks, and expression profiles of NAC genes among these three legumes. We have identified a total of 21 potential drought-responsive NAC genes in these legumes. The identified candidate genes would serve as a useful resource for molecular breeding for developing drought-tolerant legume varieties with improved productivity.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunmiao Jiang ◽  
Gongbo Lv ◽  
Jinxin Ge ◽  
Bin He ◽  
Zhe Zhang ◽  
...  

AbstractGATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding GATA TFs in Aspergillusoryzae is extremely poor. In this study, we identified and functionally characterized seven GATA proteins from A.oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergillus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression patterns of seven A.oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly responsive to high temperature and high salt stress. The protein–protein interaction network of A.oryzae GATA TFs revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial for understanding their biological function and evolutionary features and provide an important starting point to further understand the role of GATA TFs in the regulation of distinct environmental conditions in A.oryzae.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhixuan Du ◽  
Qitao Su ◽  
Zheng Wu ◽  
Zhou Huang ◽  
Jianzhong Bao ◽  
...  

AbstractMultidrug and toxic compound extrusion (MATE) proteins are involved in many physiological functions of plant growth and development. Although an increasing number of MATE proteins have been identified, the understanding of MATE proteins is still very limited in rice. In this study, 46 MATE proteins were identified from the rice (Oryza sativa) genome by homology searches and domain prediction. The rice MATE family was divided into four subfamilies based on the phylogenetic tree. Tandem repeats and fragment replication contribute to the expansion of the rice MATE gene family. Gene structure and cis-regulatory elements reveal the potential functions of MATE genes. Analysis of gene expression showed that most of MATE genes were constitutively expressed and the expression patterns of genes in different tissues were analyzed using RNA-seq. Furthermore, qRT-PCR-based analysis showed differential expression patterns in response to salt and drought stress. The analysis results of this study provide comprehensive information on the MATE gene family in rice and will aid in understanding the functional divergence of MATE genes.


2019 ◽  
Vol 144 (2) ◽  
pp. 79-91 ◽  
Author(s):  
Zhigang Ouyang ◽  
Huihui Duan ◽  
Lanfang Mi ◽  
Wei Hu ◽  
Jianmei Chen ◽  
...  

In eukaryotic systems, messenger RNA regulations, including splicing, 3′-end formation, editing, localization, and translation, are achieved by different RNA-binding proteins and noncoding RNAs. The YTH domain is a newly identified RNA-binding domain that was identified by comparing its sequence with that of splicing factor YT521-B. Previous study showed that the YTH gene plays an important role in plant resistance to abiotic and biotic stress. In this study, 211 YTH genes were identified in 26 species that represent four major plant lineages. Phylogenetic analysis revealed that these genes could be divided into eight subgroups. All of the YTH genes contain a YT521 domain and have different structures. Ten YTH genes were identified in navel orange (Citrus sinensis). The expression profiles of these CitYTH genes were analyzed in different tissues and at different fruit developmental stages, and CitYTH genes displayed distinct expression patterns under heat, cold, salt, and drought stress. Furthermore, expression of the CitYTH genes in response to exogenous hormones was measured. Nuclear localization was also confirmed for five of the proteins encoded by these genes after transient expression in Nicotiana benthamiana cells. This study provides valuable information on the role of CitYTHs in the signaling pathways involved in environmental stress responses in Citrus.


Sign in / Sign up

Export Citation Format

Share Document