Simultaneous assessment of nitrogen and water status in winter wheat using hyperspectral and thermal sensors

2021 ◽  
Vol 127 ◽  
pp. 126287
Author(s):  
J.L. Pancorbo ◽  
C. Camino ◽  
M. Alonso-Ayuso ◽  
M.D. Raya-Sereno ◽  
I. Gonzalez-Fernandez ◽  
...  
Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1315
Author(s):  
Xun Bo Zhou ◽  
Guo Yun Wang ◽  
Li Yang ◽  
Hai Yan Wu

Low water availability coupled with poor planting method has posed a great challenge to winter wheat (Triticum aestivum L.) productivity. To improve productivity and water use efficiency (WUE) under deficit irrigation, an effective water-saving technology that is characterized by three planting modes has been developed (uniform with 30-cm row spacing (U), double-double row spacing of 5 cm (DD), and furrow-ridge row spacing of alternated 20 cm and 40 cm (F)) combined with three irrigation regimes (50 mm water each at growth stage 34 (GS34) and GS48 (W1), and 100 mm water at GS48 (W2), or 100 mm each water at GS34 and GS48 (W3)). Results showed that DD increased yield by 9.7% and WUE by 12.6% due to higher soil water status and less soil water depletion and evapotranspiration compared with U. Although the soil water status, soil water depletion, evapotranspiration, and yield increased with increasing irrigation amount, more soil water depletion and evapotranspiration resulted in low WUE. The deficit irrigation was beneficial for improving WUE as W1 had significantly increased yield by 5.4% and WUE by 7.1% compared with W2. Yield and evapotranspiration showed a quadratic dynamic equation indicating that yield increased with increasing evapotranspiration. Considering WUE and relatively higher yield under deficit water, W1 combined with DD is suggested to be a good management strategy to be applied in winter wheat of water-scarce regions.


2015 ◽  
Vol 153 ◽  
pp. 32-41 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Xiying Zhang ◽  
Xiuwei Liu ◽  
Liwei Shao ◽  
Hongyong Sun ◽  
...  

2020 ◽  
Author(s):  
Zoubair Rafi ◽  
Valérie Le Dantec ◽  
Olivier Merlin ◽  
Said Khabba ◽  
Patrick Mordelet ◽  
...  

<p>Agriculture is considered to be the human activity that consumes the most mobilized water on a global scale. However, crops planted in semi-arid areas regularly face periods of moderate to extreme water stress. Such water stress periods have a considerable impact on the seasonal yield of these crops. In order to participate in a more rational irrigation water management, monitoring of the rapid changes in plant water status is necessary. For this purpose, the combination of two different wavelength ranges will be explored : an index based on Xanthophyll cycle (Photochemical Reflectance Index, PRI) and a commonly-used index from thermal infrared spectral range (LST). An experiment on winter wheat was carried out over two agricultural campaigns (2016 to 2018) in the Haouz basin, which is located in the Marrakech region, to better assimilate the temporal dynamics of PRI and surface temperature. In this study, four different approaches are proposed to study the functioning of wheat : 1- an approach based on solar angle to remove the structure effect (PRI<sub>0</sub>) from the PRI signal and to derive a water stress index PRI<sub>j</sub>, 2- an approach based on global radiation (R<sub>g</sub>) to extrapolate a theoretical PRI (PRI<sub>th</sub>) for R<sub>g</sub> equal to zero and to calculate a water stress index PRI<sub>lin</sub>, 3- an approach that determines an optimal PRI (PRI<sub>pot</sub>) on the basis of the available water content (AWC) criterion in order to derive a stress index I-PRI and 4- an energy balance approach to extract dry and wet surface temperatures in order to establish a normalized surface temperature index (T<sub>norm</sub>). The results of this work show a strong correlation between the PRI<sub>0</sub> and the Leaf Area Index with a coefficient of determination equal to 0.92, indicating that it is possible to isolate the structural effects of wheat on the PRI signal. In addition, over the range of variation in AWC, a significant correlation with PRI<sub>j</sub>, PRI<sub>jlin</sub> and I-PRI was observed with coefficients of determination of 0.71, 0.42 and 0.24, respectively. In contrast to the T<sub>norm</sub>, which varies only for values of AWC below 30%, a coefficient of determination of 0.22 is obtained. Finally, the PRI allows us to acquire early and complete information on the response of wheat to change in AWC as opposed to the surface temperature index, revealing the potential of the PRI to monitor the water status of plants and their responses to changing environmental conditions.</p>


Author(s):  
Felicia CHEȚAN ◽  
Cornel CHEȚAN

The Transylvanian Plain has a particular aspect, as the hilly areas are predominant and here the soil erosion phenomena through levigation are frequently encountered. The effect of water availability on yields has been thoroughly researched, being one of the main limitative factors of the winter wheat yields. Starting from these considerations, during the agricultural years 2012-2018, a bi-factorial yield test was performed at Agricultural Research and Development Station (ARDS) Turda, for a period of seven years. The study explored the influence of the water status under the influence of two tillage systems and the climatic conditions specific for this area on winter wheat yields. In the field conditions of Turda during experimental interval, the soil tillage system had a rather small impact on the winter wheat yields. In the conventional system (CS) a reserve of accessible water is preserved better during the spring period, this being attributed to a better infiltration into the soil of winter precipitation (snow). In the conservative system (NT), the observed trend suggests that restoration of the ground water reserve is more difficult than in the CS but the loss of water in the CS is just as fast.


2021 ◽  
Vol 13 (15) ◽  
pp. 2998
Author(s):  
Vita Antoniuk ◽  
Kiril Manevski ◽  
Kirsten Kørup ◽  
Rene Larsen ◽  
Inge Sandholt ◽  
...  

Precision irrigation is a promising method to mitigate the impacts of drought stress on crop production with the optimal use of water resources. However, the reliable assessment of plant water status has not been adequately demonstrated, and unmanned aerial systems (UAS) offer great potential for spatiotemporal improvements. This study utilized UAS equipped with multispectral and thermal sensors to detect and quantify drought stress in winter wheat (Triticum aestivum L.) using the Water Deficit Index (WDI). Biennial field experiments were conducted on coarse sand soil in Denmark and analyses were performed at both diurnal and seasonal timescales. The WDI was significantly correlated with leaf stomatal conductance (R2 = 0.61–0.73), and the correlation was weaker with leaf water potential (R2 = 0.39–0.56) and topsoil water status (the highest R2 of 0.68). A semi-physical model depicting the relationship between WDI and fraction of transpirable soil water (FTSW) in the root zone was derived with R2 = 0.74. Moreover, WDI estimates were improved using an energy balance model with an iterative scheme to estimate the net radiation and land surface temperature, as well as the dual crop coefficient. The diurnal variation in WDI revealed a pattern of the ratio of actual to potential evapotranspiration, being higher in the morning, decreasing at noon hours and ‘recovering’ in the afternoon. Future work should investigate the temporal upscaling of evapotranspiration, which may be used to develop methods for site-specific irrigation recommendations.


Author(s):  
Ben Zhao ◽  
Traore Adama ◽  
Syed Tahir Ata-Ul-Karim ◽  
Yan Guo ◽  
Zhandong Liu ◽  
...  

2019 ◽  
Vol 16 (15) ◽  
pp. 2937-2947 ◽  
Author(s):  
Xin Yang ◽  
Shishi Liu ◽  
Yinuo Liu ◽  
Xifeng Ren ◽  
Hang Su

Abstract. The photochemical reflectance index (PRI) has emerged to be a pre-visual indicator of water stress. However, whether the varying shaded-leaf fractions, which may be caused by multiple view angles or the changing crop density in the field, affect the performance of PRI in detecting water stress of crops is still uncertain. This study evaluated the impact of the varying shaded-leaf fractions on estimating relative water content (RWC) across growth stages of winter wheat using seven formulations of PRI. Results demonstrated that for the control treatment the mean PRI of sunlit leaves was slightly higher than those of shaded leaves, but the difference between PRI of sunlit and shaded leaves increased as water resources became more limiting. Despite the difference between PRI of sunlit and shaded leaves, the significance of the linear relationship between RWC and most studied formulations of PRI did not show obvious variations with shadow fractions, except for the 100 % shaded-leaf condition. Among the studied formulations of PRI, PRI3 based on reflectance at 512 nm as the reference band provided the most accurate estimates of RWC with varying shaded-leaf fractions, except for the 100 % shaded-leaf condition. The slope and the intercept of linear regression models with PRI3 also showed minimized variations with shaded-leaf fractions. We then applied a uniform RWC prediction model to the data of varying shaded-leaf fractions and found that the accuracy of RWC predictions was not significantly affected in the mixture of sunlit and shaded leaves. However, RWC estimated with PRI of the 100 % shaded-leaf condition had the highest root mean square error (RMSE), implying that PRI of the pure shaded leaves may yield inaccurate estimates of plant water status.


1983 ◽  
Vol 10 (4) ◽  
pp. 337-342 ◽  
Author(s):  
James M. Stone ◽  
M. B. Kirkham

Municipalities are injecting sewage sludge into soil—as a means of disposal, to avoid the problems of odours, pests, and runoff, and to avert public disapproval associated with application on the surface. The sludge injected is mainly liquid (94–99%), but its effect on soil-water content in the field has not been sufficiently reported on. The objective of the project here described was to determine, in a subhumid region, whether the liquid in sludge changed the water status of soil compared with that of soil with inorganic fertilizer. In addition, growth of Winter Whẽat (Triticum aestivum L. em. Thell.), grown on dryland and fertilized with the sludge or with inorganic fertilizer, was monitored. The experiment, carried out during the 1980–81 growing-season, was done at the Manhattan, Kansas, sewage-sludge farm, where aerobically digested sludge has been injected since 1976.


Sign in / Sign up

Export Citation Format

Share Document