scholarly journals “The preadipocyte factor” DLK1 marks adult mouse adipose tissue residing vascular cells that lack in vitro adipogenic differentiation potential

FEBS Letters ◽  
2009 ◽  
Vol 583 (17) ◽  
pp. 2947-2953 ◽  
Author(s):  
Ditte Caroline Andersen ◽  
Line Jensen ◽  
Henrik Daa Schrøder ◽  
Charlotte Harken Jensen
2020 ◽  
Vol 21 (21) ◽  
pp. 8350
Author(s):  
Sara Al-Ghadban ◽  
India A. Pursell ◽  
Zaidmara T. Diaz ◽  
Karen L. Herbst ◽  
Bruce A. Bunnell

The growth and differentiation of adipose tissue-derived stem cells (ASCs) is stimulated and regulated by the adipose tissue (AT) microenvironment. In lipedema, both inflammation and hypoxia influence the expansion and differentiation of ASCs, resulting in hypertrophic adipocytes and deposition of collagen, a primary component of the extracellular matrix (ECM). The goal of this study was to characterize the adipogenic differentiation potential and assess the levels of expression of ECM-remodeling markers in 3D spheroids derived from ASCs isolated from both lipedema and healthy individuals. The data showed an increase in the expression of the adipogenic genes (ADIPOQ, LPL, PPAR-γ and Glut4), a decrease in matrix metalloproteinases (MMP2, 9 and 11), with no significant changes in the expression of ECM markers (collagen and fibronectin), or integrin A5 in 3D differentiated lipedema spheroids as compared to healthy spheroids. In addition, no statistically significant changes in the levels of expression of inflammatory genes were detected in any of the samples. However, immunofluorescence staining showed a decrease in fibronectin and increase in laminin and Collagen VI expression in the 3D differentiated spheroids in both groups. The use of 3D ASC spheroids provide a functional model to study the cellular and molecular characteristics of lipedema AT.


2021 ◽  
Vol 22 (6) ◽  
pp. 2820
Author(s):  
Stephan Altmann ◽  
Jürgen Mut ◽  
Natalia Wolf ◽  
Jutta Meißner-Weigl ◽  
Maximilian Rudert ◽  
...  

Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac4ManNAz was detectable for up to six days while Ac4ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marie-Theresa Weickert ◽  
Judith S. Hecker ◽  
Michèle C. Buck ◽  
Christina Schreck ◽  
Jennifer Rivière ◽  
...  

AbstractMyelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell disorders with a poor prognosis, especially for elderly patients. Increasing evidence suggests that alterations in the non-hematopoietic microenvironment (bone marrow niche) can contribute to or initiate malignant transformation and promote disease progression. One of the key components of the bone marrow (BM) niche are BM stromal cells (BMSC) that give rise to osteoblasts and adipocytes. It has been shown that the balance between these two cell types plays an important role in the regulation of hematopoiesis. However, data on the number of BMSC and the regulation of their differentiation balance in the context of hematopoietic malignancies is scarce. We established a stringent flow cytometric protocol for the prospective isolation of a CD73+ CD105+ CD271+ BMSC subpopulation from uncultivated cryopreserved BM of MDS and AML patients as well as age-matched healthy donors. BMSC from MDS and AML patients showed a strongly reduced frequency of CFU-F (colony forming unit-fibroblast). Moreover, we found an altered phenotype and reduced replating efficiency upon passaging of BMSC from MDS and AML samples. Expression analysis of genes involved in adipo- and osteogenic differentiation as well as Wnt- and Notch-signalling pathways showed significantly reduced levels of DLK1, an early adipogenic cell fate inhibitor in MDS and AML BMSC. Matching this observation, functional analysis showed significantly increased in vitro adipogenic differentiation potential in BMSC from MDS and AML patients. Overall, our data show BMSC with a reduced CFU-F capacity, and an altered molecular and functional profile from MDS and AML patients in culture, indicating an increased adipogenic lineage potential that is likely to provide a disease-promoting microenvironment.


2021 ◽  
Vol 11 (8) ◽  
pp. 738
Author(s):  
Melissa D. Mercado-Rubio ◽  
Erick Pérez-Argueta ◽  
Alejandro Zepeda-Pedreguera ◽  
Fernando J. Aguilar-Ayala ◽  
Ricardo Peñaloza-Cuevas ◽  
...  

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 and c-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.


Author(s):  
Tammy Ying ◽  
Thea N. Golden ◽  
Lan Cheng ◽  
Jeff Ishibashi ◽  
Patrick Seale ◽  
...  

The cytokine interleukin 4 (IL-4) can increase beige adipogenesis in adult rodents. However, neonatal animals use a distinct adipocyte precursor compartment for adipogenesis compared to adults. In this study, we address whether IL-4 can induce persistent effects on adipose tissue when administered subcutaneously in the interscapular region during the neonatal period in Sprague Dawley rats. We injected IL-4 into neonatal male rats during postnatal days 1-6, followed by analysis of adipose tissue and adipocyte precursors at 2 weeks and 10 weeks of age. Adipocyte precursors were cultured and subjected to differentiation in vitro. We found that a short and transient IL-4 exposure in neonates upregulated uncoupling protein 1 (Ucp1) mRNA expression and decreased fat cell size in subcutaneous white adipose tissue (WAT). Adipocyte precursors from mature rats that had been treated with IL-4 as neonates displayed a decrease in adiponectin (Adipoq) but no change in Ucp1 expression, as compared to controls. Thus, neonatal IL-4 induces acute beige adipogenesis and decreases adipogenic differentiation capacity long term. Overall, these findings indicate that the neonatal period is critical for adipocyte development and may influence the later onset of obesity.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sha Wang ◽  
Guoying Gao ◽  
Yiwei He ◽  
Qiong Li ◽  
Zhan Li ◽  
...  

With the adjustment of human diet and lifestyle changes, the prevalence of obesity is increasing year by year. Obesity is closely related to the excessive accumulation of white adipose tissue (WAT), which can synthesize and secrete a variety of adipokines. Apelin is a biologically active peptide in the adipokines family. Past studies have shown that apelin plays an important regulatory role in the pathogenesis and pathophysiology of diseases such as the cardiovascular system, respiratory system, digestive system, nervous system, and endocrine system. Apelin is also closely related to diabetes and obesity. Therefore, we anticipate that apelin-13 has an effect on lipometabolism and intend to explore the effect of apelin-13 on lipometabolism at the cellular and animal levels. In in vitro experiments, amidation-modified apelin-13 can significantly reduce the lipid content; TG content; and the expression of PPARγ, perilipin mRNA, and protein in adipocytes. Animal experiments also show that amidation modification apelin-13 can improve the abnormal biochemical indicators of diet-induced obesity (DOI) rats and can reduce the average diameter of adipocytes in adipose tissue, the concentration of glycerol, and the expression of PPARγ and perilipin mRNA and protein. Our results show that apelin-13 can affect the metabolism of adipose tissue, inhibit adipogenic differentiation of adipocytes, promote lipolysis, and thereby improve obesity. The mechanism may be regulating the expression of PPARγ to inhibit adipogenic differentiation and regulating the expression of perilipin to promote lipolysis. This study helps us understand the role of apelin-13 in adipose tissue and provide a basis for the elucidation of the regulation mechanism of lipometabolism and the development of antiobesity drugs.


2006 ◽  
Vol 191 (1) ◽  
pp. 101-111 ◽  
Author(s):  
David J Flint ◽  
Nadine Binart ◽  
Stephanie Boumard ◽  
John J Kopchick ◽  
Paul Kelly

Direct metabolic effects of GH on adipose tissue are well established, but effects of prolactin (PRL) have been more controversial. Recent studies have demonstrated PRL receptors on adipocytes and effects of PRL on adipose tissue in vitro. The role of GH in adipocyte proliferation and differentiation is also controversial, since GH stimulates adipocyte differentiation in cell lines, whereas it stimulates proliferation but inhibits differentiation of adipocytes in primary cell culture. Using female gene disrupted (ko) mice, we showed that absence of PRL receptors (PRLRko) impaired development of both internal and s.c. adipose tissue, due to reduced numbers of adipocytes, an effect differing from that of reduced food intake, where cell volume is decreased. In contrast, GHRko mice exhibited major decreases in the number of internal adipocytes, whereas s.c. adipocyte numbers were increased, even though body weight was decreased by 40–50%. The changes in adipose tissue in PRLRko mice appeared to be entirely due to extrinsic factors since preadipocytes proliferated and differentiated in similar fashion to wild-type animals in vitro and their response to insulin and isoproterenol was similar to wild-type animals. This contrasted with GHRko mice, where s.c. adipocytes proliferated, differentiated, and responded to hormones in identical fashion to controls, whereas parametrial adipocytes exhibited markedly depressed proliferation and differentiation potential and failed to respond to insulin or noradrenaline. Our results provide in vivo evidence that both GH and PRL stimulate differentiation of adipocytes but that the effects of GH are site specific and induce intrinsic changes in the precursor population, which are retained in vitro.


2020 ◽  
Vol 21 (3) ◽  
pp. 799 ◽  
Author(s):  
Joanna Lelek ◽  
Ewa K. Zuba-Surma

Mesenchymal stem/ stromal cells (MSCs) represent progenitor cells of various origin with multiple differentiation potential, representing the most studied population of stem cells in both in vivo pre-clinical and clinical studies. MSCs may be found in many tissue sources including extensively studied adipose tissue (ADSCs) and umbilical cord Wharton’s jelly (UC-MSCs). Most of sanative effects of MSCs are due to their paracrine activity, which includes also release of extracellular vesicles (EVs). EVs are small, round cellular derivatives carrying lipids, proteins, and nucleic acids including various classes of RNAs. Due to several advantages of EVs when compare to their parental cells, MSC-derived EVs are currently drawing attention of several laboratories as potential new tools in tissue repair. This review focuses on pro-regenerative properties of EVs derived from ADSCs and UC-MSCs. We provide a synthetic summary of research conducted in vitro and in vivo by employing animal models and within initial clinical trials focusing on neurological, cardiovascular, liver, kidney, and skin diseases. The summarized studies provide encouraging evidence about MSC-EVs pro-regenerative capacity in various models of diseases, mediated by several mechanisms. Although, direct molecular mechanisms of MSC-EV action are still under investigation, the current growing data strongly indicates their potential future usefulness for tissue repair.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Maria Pia Fuggetta ◽  
Manuela Zonfrillo ◽  
Cristina Villivà ◽  
Enzo Bonmassar ◽  
Giampiero Ravagnan

Objective. Obesity is considered a clinic condition characterized by a state of chronic low-grade inflammation. The role of macrophages and adipocytokines in adipose tissue inflammation is in growing investigation. The physiopathological mechanisms involved in inflammatory state in obesity are not fully understood though the adipocytokines seem to characterize the biochemical link between obesity and inflammation. The aim of this work is to analyze the effect of theobromine, a methylxanthine present in the cocoa, on adipogenesis and on proinflammatory cytokines evaluated in a model of fat tissue inflammation in vitro. Methods. In order to mimic in vitro this inflammatory condition, we investigated the interactions between human-like macrophages U937 and human adipocyte cell lines SGBS. The effect of theobromine on in vitro cell growth, cell cycle, adipogenesis, and cytokines release in the supernatants has been evaluated. Results. Theobromine significantly inhibits the differentiation of preadipocytes in mature adipocytes and reduces the levels of proinflammatory cytokines as MCP-1 and IL-1β in the supernatants obtained by the mature adipocytes and macrophages interaction. Conclusion. Theobromine reduces adipogenesis and proinflammatory cytokines; these data suggest its potential therapeutic effect for treating obesity by control of macrophages infiltration in adipose tissue and inflammation.


Sign in / Sign up

Export Citation Format

Share Document