In vitro stability of bioactive peptides derived from fermented soy milk against heat treatment, pH and gastrointestinal enzymes

LWT ◽  
2018 ◽  
Vol 91 ◽  
pp. 303-307 ◽  
Author(s):  
Brij Pal Singh ◽  
Shilpa Vij
1977 ◽  
Vol 16 (04) ◽  
pp. 157-162 ◽  
Author(s):  
C. Schümichen ◽  
B. Mackenbrock ◽  
G. Hoffmann

SummaryThe bone-seeking 99mTc-Sn-pyrophosphate compound (compound A) was diluted both in vitro and in vivo and proved to be unstable both in vitro and in vivo. However, stability was much better in vivo than in vitro and thus the in vitro stability of compound A after dilution in various mediums could be followed up by a consecutive evaluation of the in vivo distribution in the rat. After dilution in neutral normal saline compound A is metastable and after a short half-life it is transformed into the other 99mTc-Sn-pyrophosphate compound A is metastable and after a short half-life in bone but in the kidneys. After dilution in normal saline of low pH and in buffering solutions the stability of compound A is increased. In human plasma compound A is relatively stable but not in plasma water. When compound B is formed in a buffering solution, uptake in the kidneys and excretion in urine is lowered and blood concentration increased.It is assumed that the association of protons to compound A will increase its stability at low concentrations while that to compound B will lead to a strong protein bond in plasma. It is concluded that compound A will not be stable in vivo because of a lack of stability in the extravascular space, and that the protein bond in plasma will be a measure of its in vivo stability.


1997 ◽  
Vol 36 (02) ◽  
pp. 71-75 ◽  
Author(s):  
S. Glatz ◽  
S. N. Reske ◽  
K. G. Grillenberger

Summary Aim: One therapeutic approach to rheumatoid arthritis and other inflammatory arthropathies besides surgical removal of inflamed synovium is radiation synovectomy using beta-emitting radionuclides to destroy the affected synovial tissue. Up to now the major problem associated with the use of labeled particles or colloids has been considerable leakage of radionuclides from the injected joint coupled with high radiation doses to liver and other non target organs. In this study we compared 188Re labeled hydroxyapatite particles and 188Re rhenium sulfur colloid for their potential use in radiation synovectomy. Methods: To this end we varied the labeling conditions (concentrations, pH-value, heating procedure) and analyzed the labeling yield, radiochemical purity, and in vitro stability of the resulting radiopharmaceutical. Results: After optimizing labeling conditions we achieved a labeling yield of more than 80% for 188Re hydroxyapatite and more than 90% for the rhenium sulfur colloid. Both of the radiopharmaceuticals can be prepared under aseptic conditions using an autoclav for heating without loss of activity. In vitro stability studies using various challenge solutions (water, normal saline, diluted synovial fluid) showed that 188Re labeled hydroxyapatite particles lost about 80% of their activity within 5 d in synovial fluid. Rhenium sulfur colloid on the other hand proved to be very stable with a remaining activity of more than 93% after 5 d in diluted synovial fluid. Conclusion: These in vitro results suggest that 188Re labeled rhenium sulfur colloid expects to be more suitable for therapeutic use in radiation synovectomy than the labeled hydroxyapatite particles.


1995 ◽  
Vol 74 (03) ◽  
pp. 868-873 ◽  
Author(s):  
Silvana Arrighi ◽  
Roberta Rossi ◽  
Maria Giuseppina Borri ◽  
Vladimir Lesnikov ◽  
Marina Lesnikov ◽  
...  

SummaryTo improve the safety of plasma derived factor VIII (FVIII) concentrate, we introduced a final super heat treatment (100° C for 30 min) as additional virus inactivation step applied to a lyophilized, highly purified FVIII concentrate (100 IU/mg of proteins) already virus inactivated using the solvent/detergent (SID) method during the manufacturing process.The efficiency of the super heat treatment was demonstrated in inactivating two non-lipid enveloped viruses (Hepatitis A virus and Poliovirus 1). The loss of FVIII procoagulant activity during the super heat treatment was of about 15%, estimated both by clotting and chromogenic assays. No substantial changes were observed in physical, biochemical and immunological characteristics of the heat treated FVIII concentrate in comparison with those of the FVIII before heat treatment.


2019 ◽  
Vol 26 (7) ◽  
pp. 512-522
Author(s):  
Xian Li ◽  
Long Xia ◽  
Xiaohui Ouyang ◽  
Qimuge Suyila ◽  
Liya Su ◽  
...  

<P>Background: Despite new agent development and short-term benefits in patients with Colorectal Cancer (CRC), metastatic CRC cure rates have not improved due to high rates of oxaliplatin resistance and toxicity. There is an urgent need for effective tools to prevent and treat CRC and reduce morbidity and mortality of CRC patients. Exploring the effects of bioactive peptides on the antitumor to CRC was of vital importance to the clinical application. </P><P> Objective: This study aimed to investigate the therapeutic impact of Anticancer Bioactive Peptides (ACBP) on anticancer effect of oxaliplatin (LOHP) in human colorectal cancer xenografts models in nude mice. </P><P> Methods: HCT-116 cells were cultured in vitro via CCK-8 assays and the absorbance was measured at 450 nm. Apoptosis and cell cycle were assessed by Flow Cytometry (FCM) in vitro. HCT-116 human colorectal cancer cells inoculated subcutaneously in nude mice of treatment with PBS (GG), ACBP, LOHP, ACBP+LOHP (A+L) in vivo. The quality of life was assessed by dietary amount of nude mice, the weight of nude mice, inhibition rates, tumor weight and tumor volume. Immunohistochemistry and RT-qPCR method was conducted to determine the levels of apoptosisregulating proteins/genes in transplanted tumors. </P><P> Results: ACBP induced substantial reductions in viable cell numbers and apoptosis of HCT116 cells in combined with LOHP in vitro. Compared with the control GG group, ACBP combined low dose oxaliplatin (U) group demonstrated significantly different tumor volume, the rate of apoptosis, the expression levels of Cyt-C, caspase-3,8,9 proteins and corresponding RNAs (P<0.05). The expression of pro-apoptotic proteins in the cytoplasm around the nucleus was significantly enhanced by ACBP. Short term intermittent use of ACBP alone indicted a certain inhibitory effect on tumor growth, and improve the quality of life of tumor bearing nude mice. </P><P> Conclusion: ACBP significantly increased the anti-cancer responses of low dose oxaliplatin (L-LOHP), thus, significantly improving the quality of life of tumor-bearing nude mice.</P>


2021 ◽  
Vol 11 (2) ◽  
pp. 811
Author(s):  
Federica Ianni ◽  
Alessandra Anna Altomare ◽  
Beniamino T. Cenci-Goga ◽  
Francesca Blasi ◽  
Luca Grispoldi ◽  
...  

Among various food sources, milk proteins remain the major vector for functional peptides endowed with several biological activities. Particularly, the proteolytic activity of lactic acid bacteria during milk fermentation has been one of the most followed strategies to produce bioactive peptides. In the present study, the exploration of the activity of several starter cultures, at different fermentation times, was firstly investigated by reversed phase-high performance liquid chromatography. Among the tested strains, Lactobacillus helveticus showed a higher proteolytic activity and it was submitted to further investigations by changing the fermentation substrate (skim milk, brain heart infusion, peptone water) as well as the extraction strategy (trichloroacetic acid vs. glass beads). The chromatographic analyses and the in vitro antioxidant and antihypertensive assays highlighted considerable differences for L. helveticus hydrolysates from different substrates, while a negligible impact by the two extraction protocols emerged. Furthermore, nano-high pressure liquid chromatography coupled with a high resolution mass spectrometry analyzer allowed the preliminary discrimination of fractions from fermented skim milk, likely responsible for the found activity. The obtained results suggest the possibility of varying the fermentation parameters in order to maximize the functional effects of the bioactive peptides.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 321
Author(s):  
Camila Mella ◽  
Michelle Quilaqueo ◽  
Rommy N. Zúñiga ◽  
Elizabeth Troncoso

The aim of this work was to study the impact of the methodology of in vitro gastric digestion (i.e., in terms of motility exerted and presence of gastric emptying) and gel structure on the degree of intestinal proteolysis and lipolysis of emulsion gels stabilized by whey protein isolate. Emulsions were prepared at pH 4.0 and 7.0 using two homogenization pressures (500 and 1000 bar) and then the emulsions were gelled by heat treatment. These gels were characterized in terms of texture analysis, and then were subjected to one of the following gastric digestion methods: in vitro mechanical gastric system (IMGS) or in vitro gastric digestion in a stirred beaker (SBg). After gastric digestion, the samples were subjected to in vitro intestinal digestion in a stirred beaker (SBi). Hardness, cohesiveness, and chewiness were significantly higher in gels at pH 7.0. The degree of proteolysis was higher in samples digested by IMGS–SBi (7–21%) than SBg–SBi (3–5%), regardless of the gel’s pH. For SBg–SBi, the degree of proteolysis was not affected by pH, but when operating the IMGS, higher hydrolysis values were obtained for gels at pH 7.0 (15–21%) than pH 4.0 (7–13%). Additionally, the percentage of free fatty acids (%FFA) released was reduced by 47.9% in samples digested in the IMGS–SBi. For the methodology SBg–SBi, the %FFA was not affected by the pH, but in the IMGS, higher values were obtained for gels at pH 4.0 (28–30%) than pH 7.0 (15–19%). Our findings demonstrate the importance of choosing representative methods to simulate food digestion in the human gastrointestinal tract and their subsequent impact on nutrient bioaccessibility.


1994 ◽  
Vol 21 (6) ◽  
pp. 893-895 ◽  
Author(s):  
Miklós Papós ◽  
Jenő Láng ◽  
Mária Rajtár ◽  
László Csernay

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 342-343
Author(s):  
Md Safiqur Rahaman Shishir ◽  
Muhammad Jamal Khan ◽  
Hassan Khanaki ◽  
Graham Brodie ◽  
Brendan Cullen ◽  
...  

Abstract Rumen degradability of crude protein (CP) of feed is a major factor that determines the utilization of CP in ruminant production. This study briefly reviewed the findings from six international studies of microwave (MW) heat treatment effect on feed CP rumen degradability and intestinal CP digestibility. Six in vitro studies of concentrate feed (canola seed, canola meal, soya bean meal, cottonseed meal, corn, and barley) showed a decrease in effective rumen degradability of dry matter and protein by 4–40% and 17–40%, respectively compared to control group (untreated concentrate feed). Among the six studies, four studies identified the MW heat treatment effect on intestinal protein digestibility. Due to MW heat treatment, canola seed, canola meal, soya bean meal, and cottonseed meal showed an increase in intestinal CP digestibility by 17%, 20%, 21%, and 19%, respectively. Overall the briefly reviewed studies showed that, MW heat treatment substantially reduced feed CP ruminal degradability and increased in vitro CP digestibility of ruminally undegraded CP.


Sign in / Sign up

Export Citation Format

Share Document