Red coloration of tropical young leaves: a possible antifungal defence?

1989 ◽  
Vol 5 (3) ◽  
pp. 293-300 ◽  
Author(s):  
Phyllis D. Coley ◽  
T. Mitchell Aide

ABSTRACTMany woody species in humid tropical forests synchronously flush entire canopies of young red leaves. Numerous unsuccessful attempts have been made to explain the adaptive value of this visually striking phenomenon. In the humid tropics, fungal attack is a potentially important source of mortality for expanding young leaves. We propose that the anthocyanins responsible for the red coloration of young leaves may play a protective role against invasions by leaf-attacking fungal pathogens.Fungus-growing leaf cutting ants (Atta columbica Guerin) were used in choice tests because they are known to select against leaves or chemicals containing fungicidal properties. In feeding trials with leaf discs from 20 common species, ant preference decreased significantly with increasing anthocyanin content. In feeding trials with pure anthocyanin (3,3',4',5,7-pentahydroxyflavylium chloride) presented on oat flakes, ants again showed a significant dosage dependent preference. This suggests that even low concentrations of anthocyanins may be harmful to the fungal colonies of ants. Additional work on the effects of anthocyanin on leafattacking fungi is encouraged.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lilach Kurzfeld-Zexer ◽  
Moshe Inbar

Abstract Background Interspecific interactions among insect herbivores are common and important. Because they are surrounded by plant tissue (endophagy), the interactions between gall-formers and other herbivores are primarily plant-mediated. Gall-forming insects manipulate their host to gain a better nutrient supply, as well as physical and chemical protection form natural enemies and abiotic factors. Although often recognized, the protective role of the galls has rarely been tested. Results Using an experimental approach, we found that the aphid, Smynthurodes betae, that forms galls on Pistacia atlantica leaves, is fully protected from destruction by the folivorous processionary moth, Thaumetopoea solitaria. The moth can skeletonize entire leaves on the tree except for a narrow margin around the galls that remains intact (“trimmed galls”). The fitness of the aphids in trimmed galls is unharmed. Feeding trials revealed that the galls are unpalatable to the moth and reduce its growth. Surprisingly, S. betae benefits from the moth. The compensatory secondary leaf flush following moth defoliation provides new, young leaves suitable for further gall induction that increase overall gall density and reproduction of the aphid. Conclusions We provide experimental support for the gall defense hypothesis. The aphids in the galls are protracted by plant-mediated mechanisms that shape the interactions between insect herbivores which feed simultaneously on the same host. The moth increase gall demsity on re-growing defoliated shoots.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1401
Author(s):  
Hazar Balti ◽  
Mejda Abassi ◽  
Karl-Josef Dietz ◽  
Vijay Kumar

In the face of rising salinity along coastal regions and in irrigated areas, molecular breeding of tolerant crops and reforestation of exposed areas using tolerant woody species is a two-way strategy. Thus, identification of tolerant plants and of existing tolerance mechanisms are of immense value. In the present study, three Eucalyptus ecotypes with potentially differential salt sensitivity were compared. Soil-grown Eucalyptus plants were exposed to 80 and 170 mM NaCl for 30 days. Besides analysing salt effects on ionic/osmotic balance, and hydrolytic enzymes, plants were compared for dynamics of light-induced redox changes in photosynthetic electron transport chain (pETC) components, namely plastocyanin (PC), photosystem I (PSI) and ferredoxin (Fd), parallel to traditional chlorophyll a fluorescence-based PSII-related parameters. Deconvoluted signals for PC and Fd from PSI allowed identification of PC and PSI as the prime salinity-sensitive components of pETC in tested Eucalyptus species. Eucalyptus loxophleba portrayed efficient K+-Na+ balance (60–90% increased K+) along with a more dynamic range of redox changes for pETC components in old leaves. Young leaves in Eucalyptus loxophleba showed robust endomembrane homeostasis, as underlined by an increased response of hydrolytic enzymes at lower salt concentration (~1.7–2.6-fold increase). Findings are discussed in context of salinity dose dependence among different Eucalyptus species.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1031
Author(s):  
Clara Bertel ◽  
Jürgen Hacker ◽  
Gilbert Neuner

In the temperate zone of Europe, plants flowering in early spring or at high elevation risk that their reproductive organs are harmed by episodic frosts. Focusing on flowers of two mountain and three early-flowering colline to montane distributed species, vulnerability to ice formation and ice management strategies using infrared video thermography were investigated. Three species had ice susceptible flowers and structural ice barriers, between the vegetative and reproductive organs, that prevent ice entrance from the frozen stems. Structural ice barriers as found in Anemona nemorosa and Muscari sp. have not yet been described for herbaceous species that of Jasminum nudiflorum corroborates findings for woody species. Flowers of Galanthus nivalis and Scilla forbesii were ice tolerant. For all herbs, it became clear that the soil acts as a thermal insulator for frost susceptible below ground organs and as a thermal barrier against the spread of ice between individual flowers and leaves. Both ice barrier types presumably promote that the reproductive organs can remain supercooled, and can at least for a certain time-period escape from effects of ice formation. Both effects of ice barriers appear significant in the habitat of the tested species, where episodic freezing events potentially curtail the reproductive success.


Plant Disease ◽  
2005 ◽  
Vol 89 (9) ◽  
pp. 1012-1012 ◽  
Author(s):  
L. Cardin ◽  
B. Delecolle ◽  
B. Moury

Dichondra repens (kidneyweed or ponysfoot), family Convolvulaceae, is a perennial plant with persistent leaves and is grown alone or in association with turfgrass in subtropical and Mediterranean regions. Because of its prostrate growth habit, it does not need to be mowed. It is also used as a potted plant for house decoration. During surveys of lawns in public gardens of the Franco-Italian Riviera conducted from 1993 to 2003, we noticed 0.1- to 0.5-cm-diameter, brownish, necrotic spots on leaves of D. repens in Antibes, Cannes, Menton, Nice, and Vallauris (France) and in Arma di Taggia, Diano Marina, Imperia, La Mortola, Ospedaletti, San Remo, and Ventimiglia (Italy). Symptoms were more intense in the spring on young leaves but lesions remained all year on older leaves. Two species of fungal pathogens were frequently isolated from these spots. One fungus produced brown, erect conidiophores with brown, pear-shaped conidia and bifid, subhyaline beaks. Conidia formed singly, were composed of 8 to 10 cells with transverse and longitudinal crosswalls, and had one to four hyaline spurs frequently longer than the conidia. Conidia measured 90 to 260 × 16 to 29 μm. The pathogen, identified as Alternaria dichondrae (1), was previously characterized in Italy, New Zealand, and Argentina. The second fungus species produced clumps of erect, brown conidiophores with hyaline, filiform conidia composed of 10 to 20 cells. These conidia measured 90 to 310 × 3 to 3.5 μm. This fungus was identified as a Cercospora sp. (2), a genus not previously reported on D. repens. For both fungi, necrotic spots similar to those observed in natural infections were obtained after spraying a suspension of mycelium and conidia onto leaves of D. repens seedlings that had two to four expanded leaves that had been pricked with a pin. The plants were maintained under high humidity. Assays of mycelium growth on agar media containing various fungicides showed that 1 ppm of pyremethanil completely inhibited the growth of A. dichondrae, whereas a mixture of 10 ppm of diethofencarb and 10 ppm of carbendazine completely inhibited Cercospora sp. growth. Telia were also observed on the lower surface of D. repens leaves, sometimes in association with disease symptoms of A. dichondrae and Cercospora sp. Disease symptoms of the rust were yellowing and curling of the leaf surface with erect petiole, whereas healthy plants were prostrate with plane leaf surfaces. The two-celled teliospores had smooth cell walls, a single germinative pore per cell, and measured 32 to 34 × 12 to 13 μm with a thin unattached pedicel. This rust fungus was consequently classified in the genus Puccinia (2), also not previously reported as a pathogen of D. repens. It is possible that Poaceae plants such as Poa pratensis grown in association with D. repens were the inoculum source. Whereas A. dichondrae and Cercospora sp. do not induce severe diseases and are not widespread, the prevalence of Puccinia sp. tends to increase over time, requiring appropriate treatments to manage infected turf grasses. References: (1) P. Gambogi et al. Trans. Br. Mycol. Soc. 65:322, 1975. (2) G. Viennot-Bourgin. Les Champignons Parasites des Plantes Cultivées, Masson ed. Paris, 1949.


Author(s):  
Xiaoyu Su ◽  
Zhenbao Jia ◽  
Fei Tao ◽  
Jiamin Shen ◽  
Jingwen Xu ◽  
...  

Phytochemical-enriched edible greens, sweet potato leaves (Ipomoea batatas L.), have become popular due to potential health benefits. However, the phytochemical contents in sweet potato leaves and their subsequent change over harvest stages and growth condition are mostly unknown. In this study, the anthocyanin profile and content in leaves of four sweet potato cultivars, i.e., white-skinned and white-fleshed Bonita, red-skinned and orange-fleshed Beauregard, red-skinned and white-fleshed Murasaki and purple-skinned and purple-fleshed P40, were evaluated. Fourteen anthocyanins were isolated and identified by HPLC-MSI/MS. The most abundant was cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, which comprised up to 20% of the total anthocyanins. Of the young leaves (1st and 2nd slip cuttings), Bonita contained the highest anthocyanin content followed by P40. Of the mature leaves (vine stage), Beauregard had the greatest anthocyanin (592.5 ± 86.4 mg/kg DW) and total phenolic (52.2 ± 3 mg GAE/g DW). It should be noted that the lowest anthocyanin and total phenolic content of shoots were found in P40, while tubers of P40 contain the highest content of each. Furthermore, the increase in leaf anthocyanin content over the growth stages that was observed in three of the cultivars but not in P40. No significant difference of anthocyanin content was found in Beauregard leaves grown in the high tunnels when compared with that in the open field. This study demonstrated for the first time that anthocyanin levels were significantly changed in response to various growth stages but not high tunnel condition, indicating that the effect of anthocyanin biosynthesis in sweet potato leaves is highly variable and genotype specific.


Antibiotics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 188 ◽  
Author(s):  
Alberto Antonelli ◽  
Luca Giovannini ◽  
Ilaria Baccani ◽  
Valentina Giuliani ◽  
Riccardo Pace ◽  
...  

The recent increase in infections mediated by drug-resistant bacterial and fungal pathogens underlines the urgent need for novel antimicrobial compounds. In this study, the antimicrobial activity (inhibitory and cidal) of HybenX®, a novel dessicating agent, in comparison with commonly used sodium hypochlorite and chlorhexidine, against a collection of bacterial and yeast strains representative of the most common human pathogenic species was evaluated. The minimal inhibitory, bactericidal, and fungicidal concentrations (MIC, MBC, and MFC, respectively) of the three different antimicrobial agents were evaluated by broth microdilution assays, followed by subculturing of suitable dilutions. HybenX® was active against 26 reference strains representative of staphylococci, enterococci, Enterobacterales, Gram-negative nonfermenters, and yeasts, although at higher concentrations than sodium hypochlorite and chlorhexidine. HybenX® MICs were 0.39% for bacteria (with MBCs ranging between 0.39% and 0.78%), and 0.1–0.78% for yeasts (with MFCs ranging between 0.78% and 1.6%). HybenX® exhibited potent inhibitory and cidal activity at low concentrations against several bacterial and yeast pathogens. These findings suggest that HybenX® could be of interest for the treatment of parodontal and endodontic infections and also for bacterial and fungal infections of other mucous membranes and skin as an alternative to sodium hypochlorite and chlorhexidine.


2019 ◽  
Vol 41 (2) ◽  
Author(s):  
Cristhian Leonardo Fenili ◽  
José Luiz Petri ◽  
Cristiano André Steffens ◽  
Mariuccia Schlichting de Martin ◽  
Cassandro Vidal Talamini do Amarante ◽  
...  

Abstract This study aimed evaluate the effect of biostimulants, foliar fertilizers and ethephon on the red color in the peel of ‘Daiane’ and ‘Venice’ apples. The experiments were conducted in Caçador/SC, during 2015/2016 and 2016/2017 seasons. In 2015/2016, the treatments were: Control; Biostimulant I; Foliar fertilizer I + Foliar fertilizer II; Biostimulant II and KCl. In 2016/2017, was included the Ethephon treatment. In 2016/2017, Biostimulant I, Foliar fertilizer I + Foliar fertilizer II and Biostimulant II increased the percentage of ‘Daiane’ and ‘Venice’ apples with greater red peel cover, without affecting the quality and maturity of the fruits. In both cultivars, ethephon was treatment that promoted a higher percentage of apples in the category above 80% of red color. Ethephon increased red color intensity of ‘Daiane’ and ‘Venice’ apples, anthocyanin content, starch index, ethylene production and yellowing of background color of the fruits. The red coloration of ‘Venice’ apple peels is enhanced with ethephon, Biostimulant I and Foliar fertilizer I + Foliar fertilizer II and Daiane apples with ethephon, Foliar fertilizer I + Foliar fertilizer II and Biostimulant II.


2003 ◽  
Vol 51 (1) ◽  
pp. 111 ◽  
Author(s):  
J. S. Choinski Jr ◽  
P. Ralph ◽  
D. Eamus

Growth, pigment levels and various photosynthesis parameters were measured in expanding leaves of Corymbia gummifera (Solander ex Gaertner) Hochreutiner. C. gummifera trees were studied growing in sandstone plateau woodland communities in Royal National Park, New South Wales, in a recently burned open habitat. Young leaves (horizontally oriented to maximise light exposure) were found to be conspicuously red until they reached approximately 75% of their full size. As the leaves expanded, anthocyanin content declined and chlorophyll levels proportionately increased. Young red leaves showed net negative carbon assimilation rates, although CO2 assimilation rate, transpiration rate, stomatal conductance, actual quantum yield of PSII (ΦPSII) and apparent electron transport rate (ETR) all increased in a similar pattern as the leaves expanded. Measurements of maximum quantum yield of dark-adapted leaves (Fv/Fm) were also correlated with leaf area. Younger leaves had lower Fv/Fm ratios than did mature leaves, whether measured at midday or 2 h after sunset, indicating that young leaves exhibited some degree of chronic photoinhibition. It is concluded that C. gummifera exhibits a transient red pattern of anthocyanin expression and that photosynthesis is limited in young leaves because of low stomatal conductance, low chlorophyll content, immature chloroplasts and an attenuation of light caused by anthocyanins.


2019 ◽  
Vol 180 (2) ◽  
pp. 95-101 ◽  
Author(s):  
T. Kh. Kumachova ◽  
O. O. Beloshapkina ◽  
A. S. Voronkov ◽  
A. S. Ryabchenko

Background. Resistance to the effects of plant biotic stressors is determined by a set of factors. Among them, the leading protective role is often assigned to the physiological and biochemical characteristics of the surface tissues. However, one cannot ignore the specificity of the microstructural organization of the plant surface, since the nature of interactions in phytopathogenic organisms is more complex than the chemical impact. Meanwhile, the information accumulated to date about the structure of the surface tissues of the vegetative and reproductive organs of plants, and the interface of mycobiota, is fragmentary.Objective. Mature leaves and fruits taken from representatives of the subfamily Maloideae Werber (Malus domestica Borkh., Pyrus communis L., Cydonia oblonga Mill. and Mespilus germanica L.) were selected for the study.Materials and methods. Samples for the research were taken from the middle part of the crown of model trees in 3 replications. In recent years, scanning electron microscopy (SEM) with cryofixation is considered the most promising technique and is used to analyze the surface of biological organisms and identification of species. It is particularly informative in the case of organisms with complex surface micromorphology and for studying the biodiversity of pathogens. However, in this work we combined the methods of light, electron (SEM, TEM) and confocal microscopy. The samples were also studied using phytopathological and histochemical techniques. Condensed polyphenols were detected using K2Cr2O7 and FeCl3 as well as 4-(Dimethylamino)cinnamaldehyde (DMACA, Sigma-Aldrich).Results. On the basis of the obtained phytopathological materials and published data an overview of fungal diseases afflicting leaves and fruits of M. domestica, P. communis, C. oblonga and M. germanica was made. It has been established that a common feature of the Maloideae fruits is the accumulation of condensed polyphenols, which play an important protective role against biotic stressors, in the cells of the pericarp’s outer tissues. Anatomical and morphological characteristics of passive immunity, or horizontal resistance to fungal pathogens, include the specific nature of waxy and cuticular deposits, features of the formation of cuticular folds and peristomatic rings in the stomata area and microstrands at the base of trichomes, thickness of the cuticle and cork tissue, and the development of lenticels on fruits.Conclusion. The studied model plants suffer from a sufficiently wide range of diseases with different etiologies; among them, the most widespread and harmful are mycoses. In view of this, their resistance to fungal pathogens correlates with the specificity of the leaf and fruit surface microstructure and the content of phenolic substances (polyphenols) in the cells of the pericarp’s surface tissues.


2010 ◽  
Vol 30 (6) ◽  
pp. 515-519
Author(s):  
Lokman Alpsoy ◽  
Elif Kotan ◽  
Abdulgani Tatar ◽  
Guleray Agar

Aflatoxins have been shown to be hepatotoxic, carcinogenic, mutagenic and teratogenic to different species of animals. Besides, at low concentrations, Selenium (Se4+) is antimutagenic and anticarcinogenic while it is toxic, mutagenic and carcinogenic at high concentrations. In this study, we aimed to evaluate the effect of Se4+ against aflatoxin GAFG1 (AFG1) on blood cultures in relation to induction of sister chromatid exchange (SCE). The results showed that at 0.4 and 0.8 parts per million (ppm) concentration of AFG1, the frequency of SCE increased in cultured human lymphocytes. When different concentration of Se4+ (0.08 and 8 ppm) were added to AFG1, the frequencies of SCE decreased. Howewer, when 800 ppm concentration of Se4+ together with 0.08 ppm AFG1 were added to cell division inhibited in the cultures. Results suggested that Se4+ could effectively inhibit AFG1-induced SCE. Besides, the protective role of Se4+ against AFG1-induced SCE is probably related to its doses.


Sign in / Sign up

Export Citation Format

Share Document