scholarly journals Gut microbiota develop towards an adult profile in a sex-specific manner during puberty

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katri Korpela ◽  
Sampo Kallio ◽  
Anne Salonen ◽  
Matti Hero ◽  
Anna Kaarina Kukkonen ◽  
...  

AbstractAccumulating evidence indicates that gut microbiota may regulate sex-hormone levels in the host, with effects on reproductive health. Very little is known about the development of intestinal microbiota during puberty in humans. To assess the connection between pubertal timing and fecal microbiota, and to assess how fecal microbiota develop during puberty in comparison with adult microbiota, we utilized a Finnish allergy-prevention-trial cohort (Flora). Data collected at 13-year follow-up were compared with adult data from a different Finnish cohort. Among the 13-year-old participants we collected questionnaire information, growth data from school-health-system records and fecal samples from 148 participants. Reference adult fecal samples were received from the Health and Early Life Microbiota (HELMi) cohort (n = 840). Fecal microbiota were analyzed using 16S rRNA gene amplicon sequencing; the data were correlated with pubertal timing and compared with data on adult microbiota. Probiotic intervention in the allergy-prevention-trial cohort was considered as a confounding factor only. The main outcome was composition of the microbiota in relation to pubertal timing (time to/from peak growth velocity) in both sexes separately, and similarity to adult microbiota. In girls, fecal microbiota became more adult-like with pubertal progression (p = 0.009). No such development was observed in boys (p = 0.9). Both sexes showed a trend towards increasing relative abundance of estrogen-metabolizing Clostridia and decreasing Bacteroidia with pubertal development, but this was statistically significant in girls only (p = 0.03). In girls, pubertal timing was associated positively with exposure to cephalosporins prior to the age of 10. Our data support the hypothesis that gut microbiota, particularly members of Ruminococcaceae, may affect pubertal timing, possibly via regulating host sex-hormone levels.Trial registration The registration number for the allergy-prevention-trial cohort: ClinicalTrials.gov, NCT00298337, registered 1 March 2006—Retrospectively registered, https://clinicaltrials.gov/show/NCT00298337. The adult-comparison cohort (HELMi) is NCT03996304.

2021 ◽  
Vol 12 ◽  
Author(s):  
Ayako Horigome ◽  
Ken Hisata ◽  
Toshitaka Odamaki ◽  
Noriyuki Iwabuchi ◽  
Jin-zhong Xiao ◽  
...  

The colonization and persistence of probiotics introduced into the adult human gut appears to be limited. It is uncertain, however, whether probiotics can successfully colonize the intestinal tracts of full-term and premature infants. In this study, we investigated the colonization and the effect of oral supplementation with Bifidobacterium breve M-16V on the gut microbiota of low birth weight (LBW) infants. A total of 22 LBW infants (12 infants in the M-16V group and 10 infants in the control group) were enrolled. B. breve M-16V was administrated to LBW infants in the M-16V group from birth until hospital discharge. Fecal samples were collected from each subject at weeks (3.7–9.3 weeks in the M-16V group and 2.1–6.1 weeks in the control group) after discharge. qPCR analysis showed that the administrated strain was detected in 83.3% of fecal samples in the M-16V group (at log10 8.33 ± 0.99 cell numbers per gram of wet feces), suggesting that this strain colonized most of the infants beyond several weeks post-administration. Fecal microbiota analysis by 16S rRNA gene sequencing showed that the abundance of Actinobacteria was significantly higher (P < 0.01), whereas that of Proteobacteria was significantly lower (P < 0.001) in the M-16V group as compared with the control group. Notably, the levels of the administrated strain and indigenous Bifidobacterium bacteria were both significantly higher in the M-16V group than in the control group. Our findings suggest that oral administration of B. breve M-16V led to engraftment for at least several weeks post-administration and we observed a potential overall improvement in microbiota formation in the LBW infants’ guts.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Öhman ◽  
Anders Lasson ◽  
Anna Strömbeck ◽  
Stefan Isaksson ◽  
Marcus Hesselmar ◽  
...  

AbstractPatients with ulcerative colitis (UC) have an altered gut microbiota composition, but the microbial relationship to disease activity needs to be further elucidated. Therefore, temporal dynamics of the fecal microbial community during remission and flare was determined. Fecal samples were collected at 2–6 time-points from UC patients during established disease (cohort EST) and at diagnosis (cohort NEW). Sampling range for cohort EST was 3–10 months and for cohort NEW 36 months. Relapses were monitored for an additional three years for cohort EST. Microbial composition was assessed by Genetic Analysis GA-map Dysbiosis Test, targeting ≥ 300 bacteria. Eighteen patients in cohort EST (8 with maintained remission and 10 experiencing a flare), provided 71 fecal samples. In cohort NEW, 13 patients provided 49 fecal samples. The microbial composition showed no clustering related to disease activity in any cohort. Microbial dissimilarity was higher between than within patients for both cohorts, irrespective of presence of a flare. Microbial stability within patients was constant over time with no major shift in overall composition nor modification in the abundance of any specific species. Microbial composition was not affected by intensified medical treatment or linked to future disease course. Thus in UC, the gut microbiota is highly stable irrespective of disease stage, disease activity or treatment escalation. This suggests that prolonged dietary interventions or repeated fecal transplantations are needed to be able to induce permanent alterations of the gut microbiota.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1682
Author(s):  
Ewa Łoś-Rycharska ◽  
Marcin Gołębiewski ◽  
Marcin Sikora ◽  
Tomasz Grzybowski ◽  
Marta Gorzkiewicz ◽  
...  

The gut microbiota in patients with food allergy, and the skin microbiota in atopic dermatitis patients differ from those of healthy people. We hypothesize that relationships may exist between gut and skin microbiota in patients with allergies. The aim of this study was to determine the possible relationship between gut and skin microbiota in patients with allergies, hence simultaneous analysis of the two compartments of microbiota was performed in infants with and without allergic symptoms. Fifty-nine infants with food allergy and/or atopic dermatitis and 28 healthy children were enrolled in the study. The skin and gut microbiota were evaluated using 16S rRNA gene amplicon sequencing. No significant differences in the α-diversity of dermal or fecal microbiota were observed between allergic and non-allergic infants; however, a significant relationship was found between bacterial community structure and allergy phenotypes, especially in the fecal samples. Certain clinical conditions were associated with characteristic bacterial taxa in the skin and gut microbiota. Positive correlations were found between skin and fecal samples in the abundance of Gemella among allergic infants, and Lactobacillus and Bacteroides among healthy infants. Although infants with allergies and healthy infants demonstrate microbiota with similar α-diversity, some differences in β-diversity and bacterial species abundance can be seen, which may depend on the phenotype of the allergy. For some organisms, their abundance in skin and feces samples may be correlated, and these correlations might serve as indicators of the host’s allergic state.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yao Su ◽  
Hong-Kun Wang ◽  
Xu-Pei Gan ◽  
Li Chen ◽  
Yan-Nan Cao ◽  
...  

Abstract Background The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. Methods Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. Results Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. Conclusion Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


Nutrients ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1323 ◽  
Author(s):  
Fumika Mano ◽  
Kaori Ikeda ◽  
Erina Joo ◽  
Yoshihito Fujita ◽  
Shunsuke Yamane ◽  
...  

The purpose of this study was to examine the influence of two kinds of major Japanese staple foods, white rice and white bread, on gut microbiota against the background in which participants eat common side dishes. Seven healthy subjects completed the dietary intervention with two 1-week test periods with a 1-week wash-out period in cross-over design (UMIN registration UMIN000023142). White bread or white rice and 21 frozen prepared side dishes were consumed during the test periods. At baseline and at the end of each period, fasting blood samples, breath samples, and fecal samples were collected. For fecal samples, 16S rRNA gene sequencing was used to analyze the gut microbiota. After the bread period, the abundance of fecal Bifidobacterium genus (19.2 ± 14.5 vs. 6.2 ± 6.6 (%), p = 0.03), fasting glucagon-like peptide 1 (GLP-1) (13.6 ± 2.0 vs. 10.5 ± 2.9 (pg/mL), p = 0.03), and breath hydrogen (23.4 ± 9.9 vs. 8.2 ± 5.5 (ppm), p = 0.02) were significantly higher than those of after the rice period. Plasma SCFAs also tended to be higher after the bread period. White bread contains more dietary fiber than refined short grain rice. These findings suggest that indigestible carbohydrate intake from short grain rice as a staple food may be smaller than that of white bread.


2019 ◽  
Vol 8 (1) ◽  
pp. 60
Author(s):  
Mohd Baasir Gaisawat ◽  
Chad W. MacPherson ◽  
Julien Tremblay ◽  
Amanda Piano ◽  
Michèle M. Iskandar ◽  
...  

Clostridium (C.) difficile-infection (CDI), a nosocomial gastrointestinal disorder, is of growing concern due to its rapid rise in recent years. Antibiotic therapy of CDI is associated with disrupted metabolic function and altered gut microbiota. The use of probiotics as an adjunct is being studied extensively due to their potential to modulate metabolic functions and the gut microbiota. In the present study, we assessed the ability of several single strain probiotics and a probiotic mixture to change the metabolic functions of normal and C. difficile-infected fecal samples. The production of short-chain fatty acids (SCFAs), hydrogen sulfide (H2S), and ammonia was measured, and changes in microbial composition were assessed by 16S rRNA gene amplicon sequencing. The C. difficile-infection in fecal samples resulted in a significant decrease (p < 0.05) in SCFA and H2S production, with a lower microbial alpha diversity. All probiotic treatments were associated with significantly increased (p < 0.05) levels of SCFAs and restored H2S levels. Probiotics showed no effect on microbial composition of either normal or C. difficile-infected fecal samples. These findings indicate that probiotics may be useful to improve the metabolic dysregulation associated with C. difficile infection.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3194
Author(s):  
Jing Wang ◽  
Yong Chen ◽  
Xiaosong Hu ◽  
Fengqin Feng ◽  
Luyun Cai ◽  
...  

The beneficial effects of ginger polyphenols have been extensively reported. However, their metabolic characteristics and health effects on gut microbiota are poor understood. The purpose of this study was to investigate the digestion stability of ginger polyphenols and their prebiotic effects on gut microbiota by simulating digestion and fermentation in vitro. Following simulated digestion in vitro, 85% of the polyphenols were still detectable, and the main polyphenol constituents identified in ginger extract are 6-, 8-, and 10-gingerols and 6-shogaol in the digestive fluids. After batch fermentation, the changes in microbial populations were measured by 16S rRNA gene Illumina MiSeq sequencing. In mixed-culture fermentation with fecal inoculate, digested ginger extract (GE) significantly modulated the fecal microbiota structure and promoted the growth of some beneficial bacterial populations, such as Bifidobacterium and Enterococcus. Furthermore, incubation with GE could elevate the levels of short-chain fatty acids (SCFAs) accompanied by a decrease in the pH value. Additionally, the quantitative PCR results showed that 6-gingerol (6G), as the main polyphenol in GE, increased the abundance of Bifidobacterium significantly. Therefore, 6G is expected to be a potential prebiotic that improves human health by promoting gut health.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Giulia Alessandri ◽  
Christian Milani ◽  
Leonardo Mancabelli ◽  
Giulia Longhi ◽  
Rosaria Anzalone ◽  
...  

ABSTRACT During the course of evolution, dogs and cats have been subjected to extensive domestication, becoming the principal companion animals for humans. For this reason, their health care, including their intestinal microbiota, is considered of considerable importance. However, the canine and feline gut microbiota still represent a largely unexplored research area. In the present work, we profiled the microbiota of 23 feline fecal samples by 16S rRNA gene and bifidobacterial internally transcribed spacer (ITS) approaches and compared this information with previously reported data from 138 canine fecal samples. The obtained data allowed the reconstruction of the core gut microbiota of the above-mentioned samples coupled with their classification into distinct community state types at both genus and species levels, identifying Bacteroides, Fusobacterium, and Prevotella 9 as the main bacterial components of the canine and feline gut microbiota. At the species level, the intestinal bifidobacterial gut communities of dogs and cats differed in terms of both species number and composition, as emphasized by a covariance analysis. Together, our findings show that the intestinal populations of cats and dogs are similar in terms of genus-level taxonomical composition, while at the bifidobacterial species level, clear differences were observed, indicative of host-specific colonization behavior by particular bifidobacterial taxa. IMPORTANCE Currently, domesticated dogs and cats are the most cherished companion animals for humans, and concerns about their health and well-being are therefore important. In this context, the gut microbiota plays a crucial role in maintaining and promoting host health. However, despite the social relevance of domesticated dogs and cats, their intestinal microbial communities are still far from being completely understood. In this study, the taxonomical composition of canine and feline gut microbiota was explored at genus and bifidobacterial species levels, allowing classification of these microbial populations into distinct gut community state types at either of the two investigated taxonomic levels. Furthermore, the reconstruction of core gut microbiota coupled with covariance network analysis based on bifidobacterial internally transcribed spacer (ITS) profiling revealed differences in the bifidobacterial compositions of canine and feline gut microbiota, suggesting that particular bifidobacterial species have developed a selective ability to colonize a specific host.


2020 ◽  
Vol 8 (8) ◽  
pp. 1165
Author(s):  
Rebecca Veca ◽  
Christian O’Dea ◽  
Jarred Burke ◽  
Eva Hatje ◽  
Anna Kuballa ◽  
...  

Adherent-invasive Escherichia coli (AIEC) strains carry virulence genes (VGs) which are rarely found in strains other than E. coli. These strains are abundantly found in gut mucosa of patients with inflammatory bowel disease (IBD); however, it is not clear whether their prevalence in the gut is affected by the diet of the individual. Therefore, in this study, we compared the population structure of E. coli and the prevalence of AIEC as well as the composition of gut microbiota in fecal samples of healthy participants (n = 61) on either a vegan (n = 34) or omnivore (n = 27) diet to determine whether diet is associated with the presence of AIEC. From each participant, 28 colonies of E. coli were typed using Random Amplified Polymorphic DNA (RAPD)–PCR. A representative of each common type within an individual was tested for the presence of six AIEC-associated VGs. Whole genomic DNA of the gut microbiota was also analyzed for its diversity profiles, utilizing the V5-V6 region of the16S rRNA gene sequence. There were no significant differences in the abundance and diversity of E. coli between the two diet groups. The occurrence of AIEC-associated VGs was also similar among the two groups. However, the diversity of fecal microbiota in vegans was generally higher than omnivores, with Prevotella and Bacteroides dominant in both groups. Whilst 88 microbial taxa were present in both diet groups, 28 taxa were unique to vegans, compared to seven unique taxa in the omnivores. Our results indicate that a vegan diet may not affect the number and diversity of E. coli populations and AIEC prevalence compared to omnivores. The dominance of Prevotella and Bacteroides among omnivores might be accounted for the effect of diet in these groups.


2020 ◽  
Vol 52 (12) ◽  
pp. 1959-1975
Author(s):  
Yu Wang ◽  
Weifan Yao ◽  
Bo Li ◽  
Shiyun Qian ◽  
Binbin Wei ◽  
...  

AbstractGut microbiota dysbiosis has a significant role in the pathogenesis of metabolic diseases, including obesity. Nuciferine (NUC) is a main bioactive component in the lotus leaf that has been used as food in China since ancient times. Here, we examined whether the anti-obesity effects of NUC are related to modulations in the gut microbiota. Using an obese rat model fed a HFD for 8 weeks, we show that NUC supplementation of HFD rats prevents weight gain, reduces fat accumulation, and ameliorates lipid metabolic disorders. Furthermore, 16S rRNA gene sequencing of the fecal microbiota suggested that NUC changed the diversity and composition of the gut microbiota in HFD-fed rats. In particular, NUC decreased the ratio of the phyla Firmicutes/Bacteroidetes, the relative abundance of the LPS-producing genus Desulfovibrio and bacteria involved in lipid metabolism, whereas it increased the relative abundance of SCFA-producing bacteria in HFD-fed rats. Predicted functional analysis of microbial communities showed that NUC modified genes involved in LPS biosynthesis and lipid metabolism. In addition, serum metabolomics analysis revealed that NUC effectively improved HFD-induced disorders of endogenous metabolism, especially lipid metabolism. Notably, NUC promoted SCFA production and enhanced intestinal integrity, leading to lower blood endotoxemia to reduce inflammation in HFD-fed rats. Together, the anti-obesity effects of NUC may be related to modulations in the composition and potential function of gut microbiota, improvement in intestinal barrier integrity and prevention of chronic low-grade inflammation. This research may provide support for the application of NUC in the prevention and treatment of obesity.


Sign in / Sign up

Export Citation Format

Share Document