scholarly journals Transcriptomic responses to aluminum stress in tea plant leaves

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Danjuan Huang ◽  
Ziming Gong ◽  
Xun Chen ◽  
Hongjuan Wang ◽  
Rongrong Tan ◽  
...  

AbstractTea plant (Camellia sinensis) is a well-known Al-accumulating plant, showing a high level of aluminum (Al) tolerance. However, the molecular mechanisms of Al tolerance and accumulation are poorly understood. We carried out transcriptome analysis of tea plant leaves in response to three different Al levels (0, 1, 4 mM, for 7 days). In total, 794, 829 and 585 differentially expressed genes (DEGs) were obtained in 4 mM Al vs. 1 mM Al, 0 Al vs. 1 mM Al, and 4 mM Al vs. 0 Al comparisons, respectively. Analysis of genes related to polysaccharide and cell wall metabolism, detoxification of reactive oxygen species (ROS), cellular transport, and signal transduction were involved in the Al stress response. Furthermore, the transcription factors such as zinc finger, myeloblastosis (MYB), and WRKY played a critical role in transcriptional regulation of genes associated with Al resistance in tea plant. In addition, the genes involved in phenolics biosynthesis and decomposition were overwhelmingly upregulated in the leaves treated with either 0 Al and 4 mM Al stress, indicating they may play an important role in Al tolerance. These results will further help us to understand mechanisms of Al stress and tolerance in tea plants regulated at the transcriptional level.

2020 ◽  
Vol 71 (20) ◽  
pp. 6512-6523
Author(s):  
Liyuan Wu ◽  
Yiyi Guo ◽  
Shengguan Cai ◽  
Liuhui Kuang ◽  
Qiufang Shen ◽  
...  

Abstract Aluminum (Al) toxicity is a major abiotic stress that restricts crop production in acid soils. Plants have evolved internal and external mechanisms of tolerance, and among them it is well known that AtSTOP1 and OsART1 are key transcription factors involved in tolerance through regulation of multiple downstream genes. Here, we identified the closest homolog of these two proteins in barley, namely HvATF1, Al-tolerance Transcription Factor 1, and determined its potential function in Al stress. HvATF1 is expressed in the nucleus, and functions in transcriptional activation. The transcription of HvATF1 was found to be constitutive in different tissues, and was little affected by Al stress. Knockdown of HvATF1 by RNAi resulted in increased Al sensitivity. Transcriptomics analysis identified 64 differently expressed genes in the RNAi lines compared to the wild-type, and these were considered as candidate downstream genes regulated by HvATF1. This study provides insights into the different molecular mechanisms of Al tolerance in barley and other plants.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Haiyan Liu ◽  
Houying Chen ◽  
Guijie Ding ◽  
Kuaifen Li ◽  
Qifei Ren

Abstract Background Pinus massoniana Lamb. is an important afforestation tree species with high economic, ecological and medicinal values. Aluminum (Al) toxicity driven by soil acidification causes dieback of P. massoniana plantations. Previous studies showed that ectomycorrhizal fungi alleviate Al stress damages in Pinus, but the underlying molecular mechanisms and key genes induced by ectomycorrhizal fungi inoculation under Al stress in Pinus have not been explored. Herein, we applied Al stress for 60 days to P. massoniana seedlings inoculated with Suillus luteus (SL) and those non-inoculated. Then, we compared their growth parameters and transcriptome in order to detect candidate genes induced by SL conferring Al tolerance in P. massoniana. Result Our results showed that SL inoculation confers Al stress tolerance in P. massoniana through improved growth performance, strong antioxidant enzyme activities and reduced malondialdehyde accumulation as compared to non-inoculated seedlings. Transcriptome sequencing further supported these findings as very few genes (51 genes) were transcriptionally altered by Al in SL inoculated plants as compared to non-inoculated plants (2140 genes). We identified three core genes (cox1, cox3 and Nd1) that were strongly up-regulated by Al in the SL inoculated plants but were down-regulated in the non-inoculated plants. We also identified 42 genes specifically regulated by SL inoculated plants under Al stress, which are involved in a wide range of biological processes such as antioxidative response, transporters, hormone signaling and plant pathogen infection responses. Conclusions Altogether, our data suggest that SL inoculation induces priming of key stress response pathways and triggers specific genes that efficiently alleviate Al stress effects in P. massoniana. The candidate genes resources generated in this study are of utmost importance for functional characterization and molecular studies aiming at improving Al tolerance in plants.


2019 ◽  
Vol 4 (1) ◽  
pp. 16-22
Author(s):  
Robiatul Adawiyah ◽  
Musadia Afa

Aluminum (Al 3+) is rhizotoxic ions in the soil (mineral) acid. Al activities increases with increasing soil acidity, below pH 5.5 the solubility of Al 3+ cations will increase. High level of soluble can cause interference with metabolic processes and plant physiology. Cumulatively, the physiology of metabolic disorders and initially looked at the root system. The tip of the root and lateral roots become thickened and hair and roots become lower, causing a decrease in root length and root tissue enlargement thus inhibiting the growth of roots, the absorption of nutrients and water, will further lower the growth, production and productivity of crops. Although Al disrupt metabolism and suppress the growth of the plant, until a certain threshold of adverse effects in Al still be tolerated, depending on the type of plant and the level of activity of Al. Tolerance of crops to Al can be expressed through two mechanisms, namely: external tolerance mechanism and internal tolerance mechanism. The main difference between the two mechanisms is in the area of detoxification Al whether in symplast (internal) or apoplast (exclusion). The ability of plants to be able to adapt to drought stress Al, depends on the ability of plants to produce organic acid in an amount sufficient for eliminating the toxic influence of stress Al. Root exudates of plants capable of producing such an organic acid that plays an important role in adaptation strategies. The high production of organic acids is associated with the formation of specific enzymes, as a response to stress Al. Allegedly the sensitive strain, the synthesis of organic acids is not adequate to chelate Al


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Dechassa Duressa ◽  
Khairy Soliman ◽  
Robert Taylor ◽  
Zachary Senwo

Toxic levels of aluminum (Al) in acid soils inhibit root growth and cause substantial reduction in yields of Al-sensitive crops. Aluminum-tolerant cultivars detoxify Al through multiple mechanisms that are currently not well understood at genetic and molecular levels. To enhance our understanding of the molecular mechanisms involved in soybean Al tolerance and toxicity, we conducted proteomic analysis of soybean roots under Al stress using a tandem combination of 2-D-DIGE, mass spectrometry, and bioinformatics tools and Al-tolerant (PI 416937) and Al-sensitive (Young) soybean genotypes at 6, 51 or 72 h of Al treatment. Comparison of the protein profile changes revealed that aluminum induced Al tolerance related proteins and enzymes in Al-tolerant PI 416937 but evoked proteins related to general stress response in Al-sensitive Young. Specifically, Al upregulated: malate dehydrogenase, enolase, malate oxidoreductase, and pyruvate dehydrogenase, in PI 416937 but not in Young. These enzymes contribute to increased synthesis of citrate, a key organic acid involved in Al detoxification. We postulate that simultaneous transgenic overexpression of several of these enzymes would be a robust genetic engineering strategy for developing Al-tolerant crops.


2018 ◽  
Vol 64 (8) ◽  
pp. 511-526 ◽  
Author(s):  
María D. Artigas Ramírez ◽  
Jéssica D. Silva ◽  
Naoko Ohkama-Ohtsu ◽  
Tadashi Yokoyama

Aluminum (Al) toxicity is a major problem affecting soil fertility, microbial diversity, and nutrient uptake of plants. Rhizobia response and legume interaction under Al conditions are still unknown; it is important to understand how to develop and improve legume cultivation under Al stress. In this study, rhizobia response was recorded under different Al concentrations. Al effect on rhizobial cells was characterized by combination with different two pH conditions. Symbiosis process was compared between α- and β-rhizobia inoculated onto soybean varieties. Rhizobial cell numbers was decreased as Al concentration increased. However, induced Al tolerance considerably depended on rhizobia types and their origins. Accordingly, organic acid results were in correlation with growth rate and cell density which suggested that citric acid might be a positive selective force for Al tolerance and plant interaction on rhizobia. Al toxicity delayed and interrupted the plant–rhizobia interaction and the effect was more pronounced under acidic conditions. Burkholderia fungorum VTr35 significantly improved plant growth under acid–Al stress in combination with all soybean varieties. Moreover, plant genotype was an important factor to establish an effective nodulation and nitrogen fixation under Al stress. Additionally, tolerant rhizobia could be applied as an inoculant on stressful agroecosystems. Furthermore, metabolic pathways have still been unknown under Al stress.


2000 ◽  
Vol 182 (20) ◽  
pp. 5885-5892 ◽  
Author(s):  
Maria Cecilia Mansilla ◽  
Daniela Albanesi ◽  
Diego de Mendoza

ABSTRACT The molecular mechanisms of regulation of the genes involved in the biosynthesis of cysteine are poorly characterized in Bacillus subtilis and other gram-positive bacteria. In this study we describe the expression pattern of the B. subtilis cysHoperon in response to sulfur starvation. A 6.1-kb polycistronic transcript which includes the cysH, cysP,ylnB, ylnC, ylnD, ylnE, and ylnF genes was identified. Its synthesis was induced by sulfur limitation and strongly repressed by cysteine. ThecysH operon contains a 5′ leader portion homologous to that of the S box family of genes involved in sulfur metabolism, which are regulated by a transcription termination control system. Here we show that induction of B. subtilis cysH operon expression is dependent on the promoter and independent of the leader region terminator, indicating that the operon is regulated at the level of transcription initiation rather than controlled at the level of premature termination of transcription. Deletion of a 46-bp region adjacent to the −35 region of the cysH promoter led to high-level expression of the operon, even in the presence of cysteine. We also found that O-acetyl-l-serine (OAS), a direct precursor of cysteine, renders cysH transcription independent of sulfur starvation and insensitive to cysteine repression. We propose that transcription of the cysHoperon is negatively regulated by a transcriptional repressor whose activity is controlled by the intracellular levels of OAS. Cysteine is predicted to repress transcription by inhibiting the synthesis of OAS, which would act as an inducer of cysH expression. These novel results provide the first direct evidence that cysteine biosynthesis is controlled at a transcriptional level by both negative and positive effectors in a gram-positive organism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Raj Kishan Agrahari ◽  
Takuo Enomoto ◽  
Hiroki Ito ◽  
Yuki Nakano ◽  
Emiko Yanase ◽  
...  

To elucidate the unknown regulatory mechanisms involved in aluminum (Al)-induced expression of POLYGALACTURONASE-INHIBITING PROTEIN 1 (PGIP1), which is one of the downstream genes of SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) regulating Al-tolerance genes, we conducted a genome-wide association analysis of gene expression levels (eGWAS) of PGIP1 in the shoots under Al stress using 83 Arabidopsis thaliana accessions. The eGWAS, conducted through a mixed linear model, revealed 17 suggestive SNPs across the genome having the association with the expression level variation in PGIP1. The GWAS-detected SNPs were directly located inside transcription factors and other genes involved in stress signaling, which were expressed in response to Al. These candidate genes carried different expression level and amino acid polymorphisms. Among them, three genes encoding NAC domain-containing protein 27 (NAC027), TRX superfamily protein, and R-R-type MYB protein were associated with the suppression of PGIP1 expression in their mutants, and accordingly, the system affected Al tolerance. We also found the involvement of Al-induced endogenous nitric oxide (NO) signaling, which induces NAC027 and R-R-type MYB genes to regulate PGIP1 expression. In this study, we provide genetic evidence that STOP1-independent NO signaling pathway and STOP1-dependent regulation in phosphoinositide (PI) signaling pathway are involved in the regulation of PGIP1 expression under Al stress.


2021 ◽  
Author(s):  
Xingwang Zhao ◽  
Longlong Zhang ◽  
Juan Wang ◽  
Zhiqiang Song ◽  
Bing Ni ◽  
...  

Abstract Background: Accumulating evidence supports the implication of circRNAs in systemic lupus erythematosus (SLE). however, little is known about their the detailed mechanisms and the roles of circRNAs in the pathogenesis of SLE.Methods: Quantitative real time-PCR (qRT-PCR) was used to determine the levels of circLOC101928570 and miR-150 in peripheral blood mononuclear cells (PBMCs) of SLE. Overexpression and knockdown experiments were conducted to assess the effects of circLOC101928570. Fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP), luciferase reporter assays, western blot, flow cytometry analysis and enzyme-linked immunosorbent assay (ELISA) were used to investigate the molecular mechanisms underlying the function of circLOC101928570. Results: The results showed that the level of circLOC101928570 was significantly down-regulated in SLE and correlated with systemic lupus erythematosus disease activity index (SLEDAI). Functionally, circLOC101928570 acted as a miR-150 sponge to relieve the repressive effect on its target c-myb, which modulates the activation of immune inflammatory responses. CircLOC101928570 knockdown enhanced apoptosis. Moreover, circLOC101928570 promote the transcriptional level of IL2RA through directly regulate miR-150/c-myb axis. Conclusion: Overall, our findings demonstrated that circLOC101928570 played a critical role in SLE. The down-expression of circLOC101928570 suppressed SLE progression through miR-150/c-myb/IL2RA axis. Our findings identified that circLOC101928570 serve as a potential biomarker for the diagnosis and therapy of SLE.


Biomolecules ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 76
Author(s):  
Fu-Rui Liang ◽  
Qin-Qing Wang ◽  
Yun-Lin Jiang ◽  
Bei-Ying Yue ◽  
Qian-Zhi Zhou ◽  
...  

The bacterial diseases of tilapia caused by Streptococcus agalactiae have resulted in the high mortality and huge economic loss in the tilapia industry. Matrix metalloproteinase-9 (MMP-9) may play an important role in fighting infection. However, the role of MMP-9 in Nile tilapia against S. agalactiae is still unclear. In this work, MMP-9 cDNA of Nile tilapia (NtMMP-9) has been cloned and characterized. NtMMP-9 has 2043 bp and encodes a putative protein of 680 amino acids. NtMMP-9 contains the conserved domains interacting with decorin and inhibitors via binding forces compared to those in other teleosts. Quantitative real-time-polymerase chain reaction (qPCR) analysis reveals that NtMMP-9 distinctly upregulated following S. agalactiae infection in a tissue- and time-dependent response pattern, and the tissues, including liver, spleen, and intestines, are the major organs against a S. agalactiae infection. Besides, the proteolytic activity of NtMMP-9 is also confirmed by heterologous expression and zymography, which proves the active function of NtMMP-9 interacting with other factors. The findings indicate that NtMMP-9 was involved in immune responses against the bacterial challenge at the transcriptional level. Further work will focus on the molecular mechanisms of NtMMP-9 to respond and modulate the signaling pathways in Nile tilapia against S. agalactiae invasion and the development of NtMMP-9-related predictive biomarkers or vaccines for preventing bacterial infection in the tilapia industry.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Sign in / Sign up

Export Citation Format

Share Document