Laser-based bioprinting for multilayer cell patterning in tissue engineering and cancer research

2021 ◽  
Author(s):  
Haowei Yang ◽  
Kai-Hung Yang ◽  
Roger J. Narayan ◽  
Shaohua Ma

Abstract 3D printing, or additive manufacturing, is a process for patterning functional materials based on the digital 3D model. A bioink that contains cells, growth factors, and biomaterials are utilized for assisting cells to develop into tissues and organs. As a promising technique in regenerative medicine, many kinds of bioprinting platforms have been utilized, including extrusion-based bioprinting, inkjet bioprinting, and laser-based bioprinting. Laser-based bioprinting, a kind of bioprinting technology using the laser as the energy source, has advantages over other methods. Compared with inkjet bioprinting and extrusion-based bioprinting, laser-based bioprinting is nozzle-free, which makes it a valid tool that can adapt to the viscosity of the bioink; the cell viability is also improved because of elimination of nozzle, which could cause cell damage when the bioinks flow through a nozzle. Accurate tuning of the laser source and bioink may provide a higher resolution for reconstruction of tissue that may be transplanted used as an in vitro disease model. Here, we introduce the mechanism of this technology and the essential factors in the process of laser-based bioprinting. Then, the most potential applications are listed, including tissue engineering and cancer models. Finally, we present the challenges and opportunities faced by laser-based bioprinting.

2019 ◽  
Vol 9 (17) ◽  
pp. 3540 ◽  
Author(s):  
Ferdows Afghah ◽  
Caner Dikyol ◽  
Mine Altunbek ◽  
Bahattin Koc

Melt electrospinning writing has been emerged as a promising technique in the field of tissue engineering, with the capability of fabricating controllable and highly ordered complex three-dimensional geometries from a wide range of polymers. This three-dimensional (3D) printing method can be used to fabricate scaffolds biomimicking extracellular matrix of replaced tissue with the required mechanical properties. However, controlled and homogeneous cell attachment on melt electrospun fibers is a challenge. The combination of melt electrospinning writing with other tissue engineering approaches, called hybrid biomanufacturing, has introduced new perspectives and increased its potential applications in tissue engineering. In this review, principles and key parameters, challenges, and opportunities of melt electrospinning writing, and particularly, recent approaches and materials in this field are introduced. Subsequently, hybrid biomanufacturing strategies are presented for improved biological and mechanical properties of the manufactured porous structures. An overview of the possible hybrid setups and applications, future perspective of hybrid processes, guidelines, and opportunities in different areas of tissue/organ engineering are also highlighted.


2015 ◽  
Vol 12 (110) ◽  
pp. 20150509 ◽  
Author(s):  
J. P. Cattalini ◽  
A. Hoppe ◽  
F. Pishbin ◽  
J. Roether ◽  
A. R. Boccaccini ◽  
...  

This work aimed to develop novel composite biomaterials for bone tissue engineering (BTE) made of bioactive glass nanoparticles (Nbg) and alginate cross-linked with Cu 2+ or Ca 2+ (AlgNbgCu, AlgNbgCa, respectively). Two-dimensional scaffolds were prepared and the nanocomposite biomaterials were characterized in terms of morphology, mechanical strength, bioactivity, biodegradability, swelling capacity, release profile of the cross-linking cations and angiogenic properties. It was found that both Cu 2+ and Ca 2+ are released in a controlled and sustained manner with no burst release observed. Finally, in vitro results indicated that the bioactive ions released from both nanocomposite biomaterials were able to stimulate the differentiation of rat bone marrow-derived mesenchymal stem cells towards the osteogenic lineage. In addition, the typical endothelial cell property of forming tubes in Matrigel was observed for human umbilical vein endothelial cells when in contact with the novel biomaterials, particularly AlgNbgCu, which indicates their angiogenic properties. Hence, novel nanocomposite biomaterials made of Nbg and alginate cross-linked with Cu 2+ or Ca 2+ were developed with potential applications for preparation of multifunctional scaffolds for BTE.


2018 ◽  
Vol 5 (3-4) ◽  
pp. 97-109 ◽  

Bone diseases and injuries have a major impact on the quality of life. Classical treatments for bone repair/regeneration/replacement have various disadvantages. Bone tissue engineering (BTE) received a great attention in the last years. Natural polymers are intensively studied in this field due to their properties (biocompatibility, biodegradability, abundance in nature, high processability). Unfortunately, their mechanical properties are poor, which is why synthetic polymers or ceramics are added in order to provide the optimal compressive, elastic or fatigue strength. Moreover, growth factors, vitamins, or antimicrobial substances are also added to enhance the cell behavior (attachment, proliferation, and differentiation). In this review, new scientific results regarding potential applications of chitosan-, alginate-, and gelatin based biocomposites in BTE will be provided, along with their in vitro and/or in vivo tests.


2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Vincent Roy ◽  
Brice Magne ◽  
Maude Vaillancourt-Audet ◽  
Mathieu Blais ◽  
Stéphane Chabaud ◽  
...  

Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.


2017 ◽  
Vol 33 (2) ◽  
pp. 134-145 ◽  
Author(s):  
Yang Liu ◽  
Zhongxun Zhang ◽  
Huilin Lv ◽  
Yong Qin ◽  
Linhong Deng

Chitosan-based material has been widely used as bone substitute due to its good biocompatibility and biodegradability. However, the hydrophobic surface of chitosan film constrains the osteogenesis mineralization in the process of bone regeneration. For this reason, we develop a novel polydopamine-modified chitosan film suitable for bone tissue engineering applications by a simple and feasible route in this study. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm the process of surface modification. For comparison, surface wettability, the capacity of mineralization in vitro, and biocompatibility of the chitosan film and the polydopamine-modified chitosan film were assessed. Research results indicate that the polydopamine-modified chitosan film has good hydrophilicity. It is very evident that the polydopamine treatment significantly influences the biomineralization capacity of the chitosan-based substrates, which enhance the growth rate of apatite on the modified chitosan film. Besides, MC3T3-E1 osteoblast experiments demonstrate that the cells can adhere and grow well on the polydopamine-modified chitosan film. It is anticipated that this polydopamine-modified chitosan film, which can be prepared in large quantities simply, should have potential applications in bone tissue engineering.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4077
Author(s):  
Samantha S. Yee ◽  
April L. Risinger

Ovarian cancer often has a poor clinical prognosis because of late detection, frequently after metastatic progression, as well as acquired resistance to taxane-based therapy. Herein, we evaluate a novel class of covalent microtubule stabilizers, the C-22,23-epoxytaccalonolides, for their efficacy against taxane-resistant ovarian cancer models in vitro and in vivo. Taccalonolide AF, which covalently binds β-tubulin through its C-22,23-epoxide moiety, demonstrates efficacy against taxane-resistant models and shows superior persistence in clonogenic assays after drug washout due to irreversible target engagement. In vivo, intraperitoneal administration of taccalonolide AF demonstrated efficacy against the taxane-resistant NCI/ADR-RES ovarian cancer model both as a flank xenograft, as well as in a disseminated orthotopic disease model representing localized metastasis. Taccalonolide-treated animals had a significant decrease in micrometastasis of NCI/ADR-RES cells to the spleen, as detected by quantitative RT-PCR, without any evidence of systemic toxicity. Together, these findings demonstrate that taccalonolide AF retains efficacy in taxane-resistant ovarian cancer models in vitro and in vivo and that its irreversible mechanism of microtubule stabilization has the unique potential for intraperitoneal treatment of locally disseminated taxane-resistant disease, which represents a significant unmet clinical need in the treatment of ovarian cancer patients.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 785
Author(s):  
Stanislav Pantelyushin ◽  
Elisabeth Ranninger ◽  
Diego Guerrera ◽  
Gregor Hutter ◽  
Caroline Maake ◽  
...  

Background: Rodent cancer models have limitations in predicting efficacy, tolerability and accompanying biomarkers of ICIs in humans. Companion dogs suffering from neoplastic diseases have gained attention as a highly relevant translational disease model. Despite successful reports of PD-1/PD-L1 blockade in dogs, no compounds are available for veterinary medicine. Methods: Here, we assessed suitability of seven FDA-approved human ICIs to target CTLA-4 or PD-1/PD-L1 in dogs. Cross-reactivity and blocking potential was assessed using ELISA and flow cytometry. Functional responses were assessed on peripheral blood mononuclear cells (PBMCs) derived from healthy donors (n = 12) and cancer patient dogs (n = 27) as cytokine production after stimulation. Immune composition and target expression of healthy donors and cancer patients was assessed via flow cytometry. Results: Four candidates showed cross-reactivity and two blocked the interaction of canine PD-1 and PD-L1. Of those, only atezolizumab significantly increased cytokine production of healthy and patient derived PBMCs in vitro. Especially lymphoma patient PBMCs responded with increased cytokine production. In other types of cancer, response to atezolizumab appeared to correlate with a lower frequency of CD8 T cells. Conclusions: Cross-functionality of atezolizumab encourages reverse translational efforts using (combination) immunotherapies in companion dog tumor patients to benefit both veterinary and human medicine.


Author(s):  
Maria Grazia Tupone ◽  
Michele d’Angelo ◽  
Vanessa Castelli ◽  
Mariano Catanesi ◽  
Elisabetta Benedetti ◽  
...  

Exploring and developing multifunctional intelligent biomaterials is crucial to improve next-generation therapies in tissue engineering and regenerative medicine. Recent findings show how distinct characteristics of in situ microenvironment can be mimicked by using different biomaterials. In vivo tissue architecture is characterized by the interconnection between cells and specific components of the extracellular matrix (ECM). Last evidence shows the importance of the structure and composition of the ECM in the development of cellular and molecular techniques, to achieve the best biodegradable and bioactive biomaterial compatible to human physiology. Such biomaterials provide specialized bioactive signals to regulate the surrounding biological habitat, through the progression of wound healing and biomaterial integration. The connection between stem cells and biomaterials stimulate the occurrence of specific modifications in terms of cell properties and fate, influencing then processes such as self-renewal, cell adhesion and differentiation. Recent studies in the field of tissue engineering and regenerative medicine have shown to deal with a broad area of applications, offering the most efficient and suitable strategies to neural repair and regeneration, drawing attention towards the potential use of biomaterials as 3D tools for in vitro neurodevelopment of tissue models, both in physiological and pathological conditions. In this direction, there are several tools supporting cell regeneration, which associate cytokines and other soluble factors delivery through the scaffold, and different approaches considering the features of the biomaterials, for an increased functionalization of the scaffold and for a better promotion of neural proliferation and cells-ECM interplay. In fact, 3D scaffolds need to ensure a progressive and regular delivery of cytokines, growth factors, or biomolecules, and moreover they should serve as a guide and support for injured tissues. It is also possible to create scaffolds with different layers, each one possessing different physical and biochemical aspects, able to provide at the same time organization, support and maintenance of the specific cell phenotype and diversified ECM morphogenesis. Our review summarizes the most recent advancements in functional materials, which are crucial to achieve the best performance and at the same time, to overcome the current limitations in tissue engineering and nervous tissue regeneration.


2016 ◽  
Vol 2 (1) ◽  
Author(s):  
William C. Lepry ◽  
Sophia Smith ◽  
Liliana Liverani ◽  
Aldo R. Boccaccini ◽  
Showan N. Nazhat

AbstractRecently, sol-gel derived borate glasses (BGs) have shown unprecedented conversion rates to bone-like mineral (hydroxycarbonated apatite). In an effort to explore their potential applications in bone tissue engineering, this study reports on the fabrication and characterization of BG particle incorporated electrospun "- polycaprolactone (PCL) fibrous composites. The electrospinning technique successfully incorporated PCL fibres with BG particles at 2.5 and 5 w/v%, with the higher BG loading creating a three-dimensional cotton-wool like morphology. Dynamic vapour sorption showed greater extents of mass change with BG content attributable to water sorption, and indicating greater reactivity in the composite systems. In vitro bioactivity was investigated in simulated body fluid for up to 7 days. Scanning electron microscopy, Fourier-transform infrared spectroscopy and xray diffraction indicated apatite formation in the 5 w/v% incorporated composite scaffold, which initiated as early as day 3. In summary, sol-gel derived BGs incorporatedfibrous electrospun PCL composites indicate rapid reactivity and bioactivity with potential applications in mineralized tissue engineering.


Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1415
Author(s):  
Marko Milojević ◽  
Jan Rožanc ◽  
Jernej Vajda ◽  
Laura Činč Ćurić ◽  
Eva Paradiž ◽  
...  

The ethical constraints and shortcomings of animal models, combined with the demand to study disease pathogenesis under controlled conditions, are giving rise to a new field at the interface of tissue engineering and pathophysiology, which focuses on the development of in vitro models of disease. In vitro models are defined as synthetic experimental systems that contain living human cells and mimic tissue- and organ-level physiology in vitro by taking advantage of recent advances in tissue engineering and microfabrication. This review provides an overview of in vitro models and focuses specifically on in vitro disease models of the endocrine pancreas and diabetes. First, we briefly review the anatomy, physiology, and pathophysiology of the human pancreas, with an emphasis on islets of Langerhans and beta cell dysfunction. We then discuss different types of in vitro models and fundamental elements that should be considered when developing an in vitro disease model. Finally, we review the current state and breakthroughs in the field of pancreatic in vitro models and conclude with some challenges that need to be addressed in the future development of in vitro models.


Sign in / Sign up

Export Citation Format

Share Document