scholarly journals Effect of Review elevated temperature on geo-polymer concrete – A Review

2020 ◽  
Vol 184 ◽  
pp. 01090
Author(s):  
V Chandrakanth ◽  
Srikanth Koniki

The study on the effect of elevated temperature on Geo-polymer concrete (GPC) got its significance because conventional concrete start to deteriorate around 4000C. GPC gains attention as it is eco-friendly and economical, by utilizing industrial by-products. GPC also an alternate solution as the raw materials to produce cement are depleting day by day. GPC gains strength by geo-polymerization with the reactions between mineral admixtures and alkaline solutions. This paper presents the studies on general properties and advantages of GPC over conventional concrete which depend on properties of binder, type of curing etc. Current study mainly concentrates on effect of elevated temperatures and post fire properties of GPC depending upon rate of heating, duration of fire and maximum high temperature. Strength and durability recovery of fire damaged concrete is discussed.

2020 ◽  
Vol 184 ◽  
pp. 01092
Author(s):  
M Niveditha ◽  
Srikanth Koniki

Geopolymer concrete is prepared by reacting silicate as well as aluminate consisting materials with a caustic activator. More often, waste materials such as GGBS, fly ash, slag from metal and iron production are used. Recent investigations adding new materials like Alccofine, which improves the properties of geopolymer concrete even at ambient temperature condition. This research paper presents a details literature survey on the durability properties of geopolymer concrete. Various research literatures are previewed on durability of geopolymer concrete with the addition of different supplementary cementious materials as their necessity is increasing due to insistent constituents. Past studies from the literature reviews suggested that replacement of cement with chemical and mineral admixtures enhanced the properties of strength and durability of concrete. The micro structures, Morphological structures by SEM, lower shrinkage, higher mechanical strengths, superior durability with environmental sustainability are observed. XRD studies shown enhanced polymerisation reaction which is responsible for development of strength. Elevated temperatures and Surface deterioration are controlled in GPC than OPC. Geopolymer concrete provides better resistance for specimens to chemical attack and also water absorption, sorptivity, porosity have good influence to the durability properties in ambient curing conditions compared to conventional concrete.


Author(s):  
Md Mustafeezul Haque* ◽  
◽  
Dr. Sabih Ahmad ◽  
Abdul Hai ◽  
Md Marghoobul Haque ◽  
...  

Geopolymer concrete can resist fire quite well when compared with conventional concrete. Recent studies to observe the behaviour of geopolymer composite column under the effect of fire are very few. In this paper results in terms of stress, strain and deformation of geopolymer composite column expressed to elevated temperature are presented. It was observed that geopolymer composite column performs better at elevated temperatures than the conventional composite column. This tests are performed with four composite column with geopolymer concrete and conventional concrete which is tested at four elevated temperatures i.e., 400 oC, 500 oC, 600 oC, 700 oC and 800 oC to evaluate the strength parameters. It results geopolymer concrete column can be used where fire disaster chances are high.


2016 ◽  
Vol 866 ◽  
pp. 88-93
Author(s):  
B. Geethakumari ◽  
R. Ramesh Kumar ◽  
V. Syam Prakash

The influence of three mineral admixtures, Silica Fume (SF), Fly Ash (FA), and Rice Husk Ash (RHA) on the fracture energy of Refractory Cement (RC) over a wide range of temperature from 300K to 1173K is studied. The optimum percentage replacement of RC by these admixtures is found to be around 0.5 for all the temperatures considered but for FA. Fracture energy of control (0% admixture) and blended RC (with 0.5% admixture) are determined by three point bending of notched beam specimens. Fracture energy of RC blended with the three mineral admixtures is lower than that of control RC for temperature range of 300K to 873K. But at elevated temperature of 1173K, blending plays its role as an admixture. Experimental results are corroborating with XRD. It is observed that phenomenon of pseudo dryness of Gismondine in the blended RC causes higher fracture energy which is double that of RC only at 1173K.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2247
Author(s):  
Fernando da Silva Souza ◽  
José Maria Franco de Carvalho ◽  
Gabriela Grotti Silveira ◽  
Vitória Cordeiro Araújo ◽  
Ricardo André Fiorotti Peixoto

The lack of usable aggregates for civil construction in Rio Branco (capital of Acre, a Federal State in the Amazon region) makes the production and use of recycled aggregates from construction and demolition waste (CDW) an alternative of great interest. In this study, a comprehensive characterization of CDW collected from 24 construction sites of six building types and three different construction phases (structures, masonry, and finishing) was carried out. The fine and coarse recycled aggregates were produced and evaluated in 10 different compositions. The aggregates’ performance was evaluated in four mixtures designed for laying and coating mortars with a total replacement of conventional aggregates and a mixture designed for a C25 concrete with 50% and 100% replacement of conventional aggregates. CDW mortars showed lower densities and greater water retention, initial adhesion, and mechanical strength than conventional mortars. CDW concretes presented lower densities and greater resistance to chloride penetration than conventional concrete, with a small mechanical strength reduction. The recycled CDW aggregates proved to be technologically feasible for safe application in mortars and concrete; for this reason, it is believed that the alternative and proposed methodology is of great interest to the Amazonian construction industry, considering the high costs of raw materials and the need for defining and consolidating a sustainable development model for the Amazon region.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1473
Author(s):  
Jun Zhao ◽  
Kang Wang ◽  
Shuaibin Wang ◽  
Zike Wang ◽  
Zhaohui Yang ◽  
...  

This paper presents results from experimental work on mechanical properties of geopolymer concrete, mortar and paste prepared using fly ash and blended slag. Compressive strength, splitting tensile strength and flexural strength tests were conducted on large sets of geopolymer and ordinary concrete, mortar and paste after exposure to elevated temperatures. From Thermogravimetric analyzer (TGA), X-ray diffraction (XRD), Scanning electron microscope (SEM) test results, the geopolymer exhibits excellent resistance to elevated temperature. Compressive strengths of C30, C40 and C50 geopolymer concrete, mortar and paste show incremental improvement then followed by a gradual reduction, and finally reach a relatively consistent value with an increase in exposure temperature. The higher slag content in the geopolymer reduces residual strength and the lower exposure temperature corresponding to peak residual strength. Resistance to elevated temperature of C40 geopolymer concrete, mortar and paste is better than that of ordinary concrete, mortar and paste at the same grade. XRD, TGA and SEM analysis suggests that the heat resistance of C–S–H produced using slag is lower than that of sulphoaluminate gel (quartz and mullite, etc.) produced using fly ash. This facilitates degradation of C30, C40 and C50 geopolymer after exposure to elevated temperatures.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 427
Author(s):  
Pavlina Mateckova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda

High-performance concrete (HPC) is subjected to wide attention in current research. Many research tasks are focused on laboratory testing of concrete mechanical properties with specific raw materials, where a mixture is prepared in a relatively small amount in ideal conditions. The wider utilization of HPC is connected, among other things, with its utilization in the construction industry. The paper presents two variants of HPC which were developed by modification of ordinary concrete used by a precast company for pretensioned bridge beams. The presented variants were produced in industrial conditions using common raw materials. Testing and comparison of basic mechanical properties are complemented with specialized tests of the resistance to chloride penetration. Tentative expenses for normal strength concrete (NSC) and HPC are compared. The research program was accomplished with a loading test of model experimental pretensioned beams with a length of 7 m made of ordinarily used concrete and one variant of HPC. The aim of the loading test was to determine the load–deformation diagrams and verify the design code load capacity calculation method. Overall, the article summarizes the possible benefits of using HPC compared to conventional concrete.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1015 ◽  
Author(s):  
Emy Aizat Azimi ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Petrica Vizureanu ◽  
Mohd Arif Anuar Mohd Salleh ◽  
Andrei Victor Sandu ◽  
...  

A geopolymer has been reckoned as a rising technology with huge potential for application across the globe. Dolomite refers to a material that can be used raw in producing geopolymers. Nevertheless, dolomite has slow strength development due to its low reactivity as a geopolymer. In this study, dolomite/fly ash (DFA) geopolymer composites were produced with dolomite, fly ash, sodium hydroxide, and liquid sodium silicate. A compression test was carried out on DFA geopolymers to determine the strength of the composite, while a synchrotron Micro-Xray Fluorescence (Micro-XRF) test was performed to assess the elemental distribution in the geopolymer composite. The temperature applied in this study generated promising properties of DFA geopolymers, especially in strength, which displayed increments up to 74.48 MPa as the optimum value. Heat seemed to enhance the strength development of DFA geopolymer composites. The elemental distribution analysis revealed exceptional outcomes for the composites, particularly exposure up to 400 °C, which signified the homogeneity of the DFA composites. Temperatures exceeding 400 °C accelerated the strength development, thus increasing the strength of the DFA composites. This appears to be unique because the strength of ordinary Portland Cement (OPC) and other geopolymers composed of other raw materials is typically either maintained or decreases due to increased heat.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


2014 ◽  
Vol 1004-1005 ◽  
pp. 148-153
Author(s):  
Min Hao ◽  
Ji Gang Ru ◽  
Ming Liu ◽  
Kun Zhang ◽  
Liang Wang ◽  
...  

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to study the microstructure and mechanical behavior of an Al-Cu-Mg alloy after tensile test at 125°C, 150°C, 175°C and 200 °C, respectively. The yield strength and ultimate tensile strength decreased with the increase of temperature, while the elongation increased firstly and then decreased. The S and S′ precipitate after tension at elevated temperatures. When the temperature was higher than 175°C, the precipitate coarsens rapidly. The alloys displayed a shear fracture features at elevated temperature. The larger S′ and S phase coarsened and dropped which forming crack in the grain boundaries and precipitate interfaces, resulting in the decrease of the elongation of the alloy.


Sign in / Sign up

Export Citation Format

Share Document