Effect of Dietary Oregano (Lippia origanoides) and Clover (Eugenia caryophillata) Essential Oilsʼ Formulations on Intestinal Health and Performance of Pigs

Planta Medica ◽  
2021 ◽  
Author(s):  
Susana Nelly Dieguez ◽  
Julieta María Decundo ◽  
Guadalupe Martínez ◽  
Fabián Andrés Amanto ◽  
Carolina Paula Bianchi ◽  
...  

AbstractThe incorporation of natural essential oils to the pigsʼ diet in intensive production systems is a potential tool to improve gut health and prevent infections without using antibiotics. Nevertheless, different products, even containing the same compounds, coming from the same botanical species, may exert dissimilar biological effects due differences in the technological processes by which they are produced and preserved. For this reason, suitability of a given product based on natural extracts, intended for swine production must be thoroughly evaluated. In the present study, we assessed the effects of three additives containing oregano (Lippia origanoides) essential oil, alone or in combination with clover (Eugenia caryophillata) essential oil, with or without being microencapsulated, on gastrointestinal health and on some performance parameters in a commercial pig production farm. Recently weaned piglets were randomly divided in four groups, and basal diet or essential oil-supplemented diet (OCE; MOCE; MOE) was randomly assigned to each of the groups from weaning to finishing. Blood samples were collected at pre-established days after weaning. Intestinal sampling took place at 42 and 72 days of age. Pigs consuming the supplemented diets showed higher intestinal metabolic activity during the post-weaning period, decreasing the impact of weaning stress on enterocytesʼ metabolism. Intestinal barrier function was not affected in pigs consuming microencapsulated products. All treated groups showed improved intestinal architecture, increased digestive enzymes activity and caecal VFA concentrations. The incorporation of the dietary essential oils products brought beneficial effects on gastrointestinal health that were reflected in improved performance parameters.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhe Wang ◽  
Chunxiao Zhang ◽  
Kangle Lu ◽  
Kai Song ◽  
Xueshan Li ◽  
...  

Poor utilization efficiency of plant protein diets always leads to intestinal barrier dysfunction and growth inhibition in animals. Probiotics have shown promise in improving growth performance and gut health of the host. However, obtaining the host-beneficial probiotic from thousands of bacterial phylotypes is challenging. Here, four intestinal autochthonous bacteria were isolated from fast-growing bullfrog after a 60-day feeding on a soybean meal (SM)-based diet. Another feeding trial was conducted to evaluate the effects of supplementing these strains in an SM-based diet on growth, nutrient digestibility, immunity, and gut health of bullfrog. A high-SM basal diet was used as a non-supplemented control group (NC), and four other diets were prepared by supplementing the basal diet with 1 × 107 CFU/g of Bacillus siamensis, Bacillus tequilensis (BT), Bacillus velezensis, and Lactococcus lactis (LL). Results showed that weight gain, feed efficiency, nitrogen retention, and apparent digestibility coefficients of dry matter and protein were significantly higher in the LL group compared with the NC group (p < 0.05). Furthermore, compared with the NC group, both BT and LL groups showed markedly higher jejunal protease and amylase activities, serum complement 4 and immunoglobulin M levels, jejunal muscularis thickness (p < 0.05), and up-regulated expression of il-10 and zo-1 genes (p < 0.05). High-throughput sequencing revealed higher abundances of Bacillus and Cetobacterium in BT and LL groups, respectively, accompanied with decreased abundances of Enterobacter and Escherichia–Shigella. Besides, KEGG pathways related to metabolisms were significantly enhanced by the LL diet relative to the NC diet (p < 0.05). Overall, the beneficial effects of two frog-derived probiotics were determined: supplementation of L. lactis in SM-based diet promoted growth and nutrient digestibility; both B. tequilensis and L. lactis supplementation improved immune response and intestinal barrier function of bullfrogs.


Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 329
Author(s):  
Noémie Van Noten ◽  
Jeroen Degroote ◽  
Elout Van Liefferinge ◽  
Bernard Taminiau ◽  
Stefaan De Smet ◽  
...  

The present study evaluated gluco-conjugation as a measure to delay thymol absorption and enhance its antimicrobial activity in the gut of weaned piglets. The three dietary treatments consisted of a basal diet without additives (TCON), supplemented with thymol at 3.7 mmol/kg dry matter (TTHY), or with an equimolar amount of thymol α-D-glucopyranoside (TTαG). Each dietary treatment was replicated in 6 pens with 2 piglets per pen (n = 12 for analytical parameters) and was supplemented for 14 days. The total (free plus gluco-conjugated) thymol concentrations in the stomach contents were 14% lower in TTαG as compared to TTHY piglets. Neither of the additives could be detected further down the gut. E.coli counts in the proximal small intestine were significantly lower in TTHY than in TTαG pigs (3.35 vs. 4.29 log10 CFU/g); however, other bacterial counts and their metabolites were unaffected by treatment. A metagenomic bacterial analysis revealed a great relative abundance of Lactobacillus spp. in the distal small intestine (range 88.4–99.9%), irrespective of treatment. The intestinal barrier function was improved by TTHY, but not TTαG, compared to TCON. In conclusion, gluco-conjugation did not result in higher thymol concentrations in the gut, but conversely, it seemed to diminish the biological effects of thymol in vivo.


2021 ◽  
Vol 13 (8) ◽  
pp. 4547
Author(s):  
Mohamed E. El-Sharnouby ◽  
Metwally M. Montaser ◽  
Sliai M. Abdallah

The flower industry depends on oil and fragrance, which is addressed in the current work. Different concentrations of NaCl (0, 250, 500, 1000, and 1500 ppm) were applied to Taif rose plants (Rosa damascena var. trigintipetala Dieck) to evaluate their effects on growth and essential oil content. Results clearly indicated the highest survival percentage (98.3%) was seen in untreated plants compared to plants under salinity stress. Moreover, increasing the NaCl levels induced an adverse effect on the growth parameters of Taif rose plants, while some essential oil contents were increased to the maximum degree of their tolerance to salinity stress. The extracted essential oils were analyzed using GC/MS. The essential oils of Taif rose plants treated with 500 ppm NaCl recorded the highest values of citronellol, geraniol and phenylethyl alcohol contents (16.56, 8.67 and 9.87%), respectively. NaCl at 250 ppm produced the highest values of heneicosane (13.12%), and then decreased to the lowest value (7.79%) with the increase of NaCl to 1500 NaCl, compared to the control and other NaCl levels. The current results could highlight the impact of salinity stress on Rosa damascena Miller var. trigintipetala Dieck for better economic and industrial applications.


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2416
Author(s):  
Reza Barekatain ◽  
Tristan Chalvon-Demersay ◽  
Clive McLaughlan ◽  
William Lambert

Two experiments were conducted to investigate the effect of arginine (Arg); the combination of Arg and glutamine (Gln); as well as an amino acid-based solution (MIX) containing Arg, Gln, threonine (Thr), and grape extract, on performance, intestinal permeability, and expression of selected mechanistic genes. Using 240 male Ross 308 off-sex broiler chickens, four experimental treatments were replicated six times with 10 birds per replicate. The experimental treatments included 5 g/kg Arg, 2.5 g/kg Arg and 2.5 g/kg Gln, and 1 g/kg MIX added to a basal diet as control. In the second study, the four dietary treatments were then given to 24 birds with or without a synthetic glucocorticoid, dexamethasone (DEX), as a gut dysfunction model. Feed conversion ratio was improved by all the supplemented treatments from day 7 to 35 of age (p < 0.001). DEX injections increased (p < 0.001) the intestinal permeability in all treatments, which tended to be reversed by Arg or MIX. Additional Arg, Arg-Gln, and MIX suppressed (p < 0.05) the overexpression of IL-1β generated by DEX. Feeding birds with MIX treatment increased (p < 0.05) expression of SGLT-1 and glutathione synthetase. In conclusion, tested amino acid supplements were effective in improving feed efficiency and restraining intestinal inflammation caused by DEX through IL-1β pathway.


2020 ◽  
Vol 98 (1) ◽  
Author(s):  
Jiao Song ◽  
Qinghe Li ◽  
Nadia Everaert ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
...  

Abstract We investigated the effects of inulin on intestinal barrier function and mucosal immunity in Salmonella enterica serovar Enteritidis (SE)–infected specific pathogen-free (SPF) chickens. SPF chickens (n = 240, 1-d-old) were divided into 4 groups (6 replicates per group, 10 chickens per replicate): a control group (CON) fed a basal diet without inulin supplementation and 3 SE-infected groups fed a basal diet supplemented with inulin 0% (SE group), 0.5% (0.5% InSE group), and 1% (1% InSE group), respectively. At 28 d of age, the chickens in SE-infected groups were orally infected with SE and in CON group were administrated with phosphated-buffered saline (PBS). Intestinal morphology, mucosal immunity, and intestinal barrier function-related gene expression were analyzed at 1- and 3-d post-infection (dpi). SE challenge significantly increased the mucosal gene expression, such as interleukin-1β (IL-1β), lipopolysaccharide-induced tumor necrosis factor factor (LITAF), interferon-γ (IFN-γ), and interleukin-6 (IL-6), and increased serum IFN-γ, secretory IgA (sIgA), and IgG concentration, and significantly decreased the gene expression levels of mucin 2 (MUC2) and claudin-1 at 3 dpi compared with the CON group (P &lt; 0.05). Inulin supplementation improved the expression levels of these immunity- and intestinal barrier function-related genes, increased villus height (VH), and decreased crypt depth (CD) in the duodenum, jejunum, and ileum at 1 and 3 dpi within the SE-challenged groups (P &lt; 0.05). SE challenge significantly increased ileal Toll-like receptor 4 (TLR4) mRNA at 1 and 3 dpi, suppressor of cytokine signaling 3 (SOCS3) mRNA at 1 dpi, and phospho-signal transducer and activator of transcription 3 (p-STAT3) and Janus kinase1 (JAK1) protein expression at 3 dpi compared with the CON group (P &lt; 0.05). Inulin supplementation suppressed p-STAT3 and JAK1 protein expression and promoted ileal TLR4 and SOCS3 mRNA expression at 3 dpi compared with SE group (P &lt; 0.05). In conclusion, inulin alleviated SE-induced gut injury by decreasing the proinflammatory response and enhancing mucosal immunity in chickens.


Animals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Majid Shakeri ◽  
Jeremy James Cottrell ◽  
Stuart Wilkinson ◽  
Weicheng Zhao ◽  
Hieu Huu Le ◽  
...  

In a 2 × 2 factorial design, 60 male Ross-308 broilers were fed either a control or 1 g/kg betaine diet and housed under thermoneutral (TN) or heat stress (HS) conditions. Broilers were acclimated to diets for 1 week under TN (25 °C), then either kept at TN or HS, where the temperature increased 8 h/day at 33 °C and 16 h/day at 25 °C for up to 10 days. Respiration rate (RR) was measured at four time points, and on each of 1, 2, 3, 7 and 10 days of HS, 12 broilers were injected with 0.5 mg/kg of Evans Blue Dye (EBD) solution to quantify regional changes in tissue damage. Betaine was quantified in tissues, and ileal damage was assessed via morphometry and transepithelial resistance (TER). Heat stress elevated RR (p < 0.001) and resulted in reduced villous height (p = 0.009) and TER (p < 0.001), while dietary betaine lowered RR during HS (p < 0.001), increased betaine distribution into tissues, and improved ileal villous height (p < 0.001) and TER (p = 0.006). Heat stress increased EBD in the muscle and kidney of chickens fed the control diet but not in those receiving betaine. Overall, these data indicate that supplemented betaine is distributed to vital organs and the gastrointestinal tract, where it is associated with improved tolerance of HS. Furthermore, EBD markers help reveal the effects of HS on organs dysfunction.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1464 ◽  
Author(s):  
Yala Stevens ◽  
Evelien Van Rymenant ◽  
Charlotte Grootaert ◽  
John Van Camp ◽  
Sam Possemiers ◽  
...  

Citrus flavanones, with hesperidin and naringin as the most abundant representatives, have various beneficial effects, including anti-oxidative and anti-inflammatory activities. Evidence also indicates that they may impact the intestinal microbiome and are metabolized by the microbiota as well, thereby affecting their bioavailability. In this review, we provide an overview on the current evidence on the intestinal fate of hesperidin and naringin, their interaction with the gut microbiota, and their effects on intestinal barrier function and intestinal inflammation. These topics will be discussed as they may contribute to gastrointestinal health in various diseases. Evidence shows that hesperidin and naringin are metabolized by intestinal bacteria, mainly in the (proximal) colon, resulting in the formation of their aglycones hesperetin and naringenin and various smaller phenolics. Studies have also shown that citrus flavanones and their metabolites are able to influence the microbiota composition and activity and exert beneficial effects on intestinal barrier function and gastrointestinal inflammation. Although the exact underlying mechanisms of action are not completely clear and more research in human subjects is needed, evidence so far suggests that citrus flavanones as well as their metabolites have the potential to contribute to improved gastrointestinal function and health.


Author(s):  
Roy Hajjar ◽  
Carole S Richard ◽  
Manuela M Santos

Butyrate is a short-chain fatty acid produced by colonic gut bacteria as a result of fermentation of dietary fibers. In the colon, butyrate is a major energy substrate and contributes to the nutritional support and proliferation of a healthy mucosa. It also promotes the intestinal barrier function by enhancing mucus production and tight junctions. In addition to its pro-proliferative effect in healthy colonocytes, butyrate inhibits the proliferation of cancer cells. The antineoplastic effect of butyrate is associated with the inhibitory effect of butyrate on histone deacetylase (HDAC) enzymes, which promote carcinogenesis. Due to the metabolic shift of cancer cells toward glycolysis, unused butyrate accumulates and inhibits procarcinogenic HDACs. In addition, recent studies suggest that butyrate may improve the healing of colonic tissue after surgery in animal models, specifically at the site of reconnection of colonic ends - anastomosis - after surgical resection. Here, we review current evidence on the impact of butyrate on epithelial integrity and colorectal cancer and present current knowledge on data that support its potential applications in surgical practice.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Gang Liu ◽  
Guiping Guan ◽  
Jun Fang ◽  
Yordan Martínez ◽  
Shuai Chen ◽  
...  

Macleaya cordataextract is of great scientific and practical interest to researchers, due to its antimicrobial and anti-inflammatory responses within experimental animals. This study was designed to determine the diarrhea score and innate immunity of growing piglets after they had receivedMacleaya cordataextract supplements. A total of 240 growing pigs were randomly assigned to one of three dietary treatments, with 8 replicates per treatment and 10 piglets per replicate. All pigs received a basal diet containing similar amounts of nutrients. The three treatments were a control (no additive), an antibiotic (200 mg/kg colistin), and theMacleaya cordataextract supplement group (40 mg/kgMacleaya cordataextract). The diarrhea score was calculated after D 28. The jejunal samples were obtained from five piglets selected randomly from each treatment on D 28. In comparison with the control group, the dietaryMacleaya cordataextract and colistin group demonstrated a substantially decreased diarrhea score. The introduction ofMacleaya cordataextract supplements to the diet significantly increased volumes of ZO-1 and claudin-1, particularly in comparison with the pigs in the control group (P<0.05). The findings indicate thatMacleaya cordataextract does enhance intestinal barrier function in growing piglets and that it could be used as a viable substitute for antibiotics.


Sign in / Sign up

Export Citation Format

Share Document