Expression patterns of auxin-responsive genes during tomato flower pedicel abscission and potential effects of calcium

2012 ◽  
Vol 60 (1) ◽  
pp. 68 ◽  
Author(s):  
Xianhong Zuo ◽  
Tao Xu ◽  
Mingfang Qi ◽  
Shuangshuang Lv ◽  
Jinhong Li ◽  
...  

This study aimed to determine the expression patterns of auxin (Aux/IAA)-responsive genes (ARG) during tomato flower pedicel abscission and the role of calcium in this auxin-mediated abscission. Most of the 19 proteins encoded by SlIAA genes showed the presence of all four conserved domains (I, II, III and IV). Expressions of some SlIAA genes decreased significantly (SlIAA 1, 3, 5, 8, 9, 10, 16, 17 and 27), while others increased (SlIAA 2, 4, 6, 7, 11, 12, 13, 26 and 29) at 0.5 h after excision. Most SlIAA genes were significantly upregulated at 1 h (except 9 and 27) then decreased to relatively low levels until 4 h after excision (except 4, 5, 8, 12, 14, 26 and 29). The SIAA genes were analysed and screened based on their expression patterns during different abscission phases. SlIAA4, 6, 9, 12 and 27 had relatively high expression levels consistent with the abscission rate, indicating potential roles in mediating abscission. SlIAA2, 3, 4, 5, 7, 9, 12, 13, 14, 16, 17, 26, 27 and 29 may have been important in delaying abscission, while SlIAA1, 9 and 12 may have been required for the completion of ethylene-induced abscission. SlIAA4, 6, 7, 8, 14, 16, 17 and 29 were important in calcium-delayed abscission. Analysis of other ARG revealed that tomato GH3 may have acted as an effective negative regulator in IAA-induced delay in abscission, while small auxin-up RNA expression patterns indicated that it may be a marker of IAA level throughout the abscission process.

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 4159-4159
Author(s):  
Francisco P. Careta ◽  
Rodrigo A. Panepucci ◽  
Daniel M Matos ◽  
Rodrigo Proto-Siqueira ◽  
Wilson A. Silva-Junior ◽  
...  

Abstract Introduction: Absence of mutations in IgVH genes or higher number of ZAP70+ cells (as a surrogate marker) in chronic lymphocytic leukemia (CLL) B-cells defines a patient group with a poorer clinical course. These features relate to the role of BCR signalling in the proliferation and survival of CLL B-cells, and establish a link between these markers and the biology of CLL prognostic subgroups. The identification of additional players in this context may help to better understand the molecular basis of this disease and contribute to develop new therapeutic approaches. A search for genes potentially related to BCR signalling, when comparing mutated and unmutated CLL cases using serial analysis of gene expression, revealed a 4-fold increase of CD72 tags in unmutated samples, a specific B cell surface glycoprotein known to transmit both positive and negative signals in BCR signalling. Objective: This finding lead us to explore the potential role of CD72 on BCR signalling in distinct CLL prognostic subgroups, as defined by ZAP70 expression. Methods: Percentage of ZAP70+ and CD72+ cells were evaluated by flow cytometry on gated CD19+CD5+ cells in 25 CLL samples. Positive cases for ZAP70 and CD72 were defined using a cut-off of 35% and 40% positive cells, respectively. Real time PCR was used to quantify the expression levels of 3 genes related to proliferation and survival, RELB, Beta-Catenin (CTNNB1) and AKT1, on 16 CD19+ enriched (purity > 90%) CLL samples. Results: Samples were classified as 11 ZAP70+ and 14 ZAP70−. Median percentage of CD72+ cells in ZAP70+ was significantly higher than for ZAP70− cases (82% compared to 39%, respectively, P=0.0029). Furthermore, percentages of CD72 and ZAP70 were positively correlated (r=0.5930 and P=0.0009). Interestingly, ZAP70+ cases were restricted to CD72+ cases (n=11, CD72+ZAP70+ [+/+]), whereas six CD72+ cases were ZAP70− (ZAP70−CD72+ [−/+]). Finally, there were 8 cases CD72−ZAP70− [−/−]. No differences among these 3 groups were observed in regard to laboratory parameters (white blood cells, total lymphocytes, lymphocyte percentage, haemoglobin, haematocrit and platelet number). Despite the reduced number of samples analysed (6 +/+, 6 −/− and 4 −/+), transcripts for RELB (P<0.05), CTNNB1 (P<0.05), and AKT1(P=0.057) were expressed at higher levels in ZAP70+CD72+ than in ZAP70−CD72+ samples. Additionally, the transcripts were expressed at higher levels in ZAP70−CD72− than in ZAP70−CD72+ samples, and this difference was statistically significant (P<0.05) for CTNB1 and AKT1, but not for RELB (P=0.054). Conclusion: Our data indicate that higher percentages of ZAP70+ cells are associated with higher expression levels of transcripts related to proliferation and survival of CLL B-cells. In the absence of ZAP70 expression, CD72 may act as a negative regulator of the BCR pathway, as indicated by the lowest levels of transcripts on ZAP70−CD72+ cases.


2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Hao Zhou ◽  
Shun Chen ◽  
Yulin Qi ◽  
Qin Zhou ◽  
Mingshu Wang ◽  
...  

Interferonγreceptor 1 (IFNGR1) and IFNGR2 are two cell membrane molecules belonging to class II cytokines, which play important roles in the IFN-mediated antiviral signaling pathway. Here, goose IFNGR1 and IFNGR2 were cloned and identified for the first time. Tissue distribution analysis revealed that relatively high levels of goose IFNγmRNA transcripts were detected in immune tissues, including the harderian gland, cecal tonsil, cecum, and thymus. Relatively high expression levels of both IFNGR1 and IFNGR2 were detected in the cecal tonsil, which implicated an important role of IFNγin the secondary immune system of geese. No specific correlation between IFNγ, IFNGR1, and IFNGR2 expression levels was observed in the same tissues of healthy geese. IFNγand its cognate receptors showed different expression profiles, although they appeared to maintain a relatively balanced state. Furthermore, the agonist R848 led to the upregulation of goose IFNγbut did not affect the expression of goose IFNGR1 or IFNGR2. In summary, trends in expression of goose IFNγand its cognate receptors showed tissue specificity, as well as an age-related dependency. These findings may help us to better understand the age-related susceptibility to pathogens in birds.


2018 ◽  
Vol 26 (11) ◽  
pp. 1429-1438 ◽  
Author(s):  
Kai-Lun Hu ◽  
Hongcui Zhao ◽  
Zheying Min ◽  
Yilei He ◽  
Tianjie Li ◽  
...  

Kisspeptins are a family of neuropeptides that are essential for fertility. Recent experimental data suggest a putative role of kisspeptin signaling in the direct control of ovarian function. To explore the expression of KISS1 and KISS1 receptor (KISS1R) in human granulosa lutein cells and the potential role of KISS1/KISS1R system in the pathogenesis of polycystic ovary syndrome (PCOS), we measured the concentration of KISS1 in follicular fluid, the expression of KISS1 and KISS1R in granulosa lutein cells, and the circulating hormones. The expression levels of KISS1 and KISS1R were significantly upregulated in human granulosa lutein cells obtained from women with PCOS. The expression levels of KISS1 in human granulosa lutein cells highly correlated with those of KISS1R in non-PCOS patients, but not in patients with PCOS, most likely due to the divergent expression patterns in women with PCOS. Additionally, the expression levels of KISS1 highly correlated with the serum levels of anti-Müllerian hormone (AMH). The expression levels of KISS1 and KISS1R, as well as the follicular fluid levels of KISS1, were not significantly different between the pregnant and nonpregnant patients in both PCOS and non-PCOS groups. In conclusion, the increased expression of KISS1 and KISS1R in human granulosa lutein cells may contribute to the pathogenesis of PCOS. The expression levels of KISS1 highly correlated with the serum levels of AMH. The KISS1 and KISS1R system in the ovary may not have a remarkable role in predicting the in vitro fertilization (IVF) outcome.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 4485-4485
Author(s):  
Wim Tissing ◽  
Jules P.P. Meijerink ◽  
Monique L. den Boer ◽  
Bas Brinkhof ◽  
Rob Pieters

Abstract In vitro resistance to Glucocorticoids (GC) is an important adverse risk factor in the treatment of ALL. To induce apoptosis in ALL cells, GC have to bind to the GC receptor (hGR), which is tightly regulated by various (co)chaperone molecules. HSP70, ST13 and HSP40 facilitate hGR binding to HSP90 and HOP in an energy dependent fashion. This complex is stabilised by immunophillins FKBP 51, FKBP59, CYP40 and P23 and is necessary for the hGR to be able to bind GC. The ATPase BAG1 can function as negative regulator of HSP70, and may downregulate hGR activity. After the GC-hGR complex is formed, it is transported to the nucleus to regulate GC responsive genes. In this study, we tested the hypothesis that RNA expression levels of these (co) chaperone molecules are important determinants for in vitro prednisolone sensitivity in childhood ALL. Methods: 20 children with leukemic cells in vitro sensitive to prednisolone (LC50<0.1μg/ml) were matched (according to age, immunophenotype and white blood cell count at diagnosis) each with an in vitro resistant patient (LC50 > 150 μg/ml). RNA expression levels of the different (co)chaperone molecules were measured by a quantitative real-time RT-PCR (Taqman) assay and standardised to endogenous GAPDH and RNAseP mRNA levels. In vitro resistance to prednisolone was measured by the MTT assay. Results. The highest median expression levels, indicated as percentage of GAPDH levels were found for HSP90 (29%) and p23 (10%), whereas FKBP51 and ST13 were expressed at 2% and 1.6% respectively. HSP70 (0.1%), HSP40 (0.44%), HOP (0.2%), FKBP59 (0.4%), PPID (0.3%) and BAG-1 (0.4%) were expressed at relatively low levels. Using matched pair analysis, no significant differences were found for the expression levels of the various (co)chaperone molecules between in vitro sensitive and resistant patients. The ratio of different (co)chaperone molecules with opposing effect (HIP versus BAG-1, FKBP-51 versus FKBP-52, HSP-90 versus P23, and HSP-90 versus the functional GR-alpha receptor, positive and negative effect respectively) was not related to GC resistance as well. Conclusion: Glucocorticoid resistance in childhood ALL can not be attributed to basal expression levels of the diverse (co)chaperone molecules involved in GC binding and transport of the GC-GR complex to the nucleus of the GR.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7728 ◽  
Author(s):  
Junmin Wang ◽  
Yanyun Yan ◽  
Zhiqi Zhang ◽  
Yali Li

Breast cancer is the leading cause of cancer-related death in women worldwide. Aberrant expression levels of miR-10b-5p in breast cancer has been reported while the molecular mechanism of miR-10b-5p in tumorigenesis remains elusive. Therefore, this study was aimed to investigate the role of miR-10b-5p in breast cancer and the network of its target genes using bioinformatics analysis. In this study, the expression profiles and prognostic value of miR-10b-5p in breast cancer were analyzed from public databases. Association between miR-10b-5p and clinicopathological parameters were analyzed by non-parametric test. Moreover, the optimal target genes of miR-10b-5p were obtained and their expression patterns were examined using starBase and HPA database. Additionally, the role of these target genes in cancer development were explored via Cancer Hallmarks Analytics Tool (CHAT). The protein–protein interaction (PPI) networks were constructed to further investigate the interactive relationships among these genes. Furthermore, GO, KEGG pathway and Reactome pathway analyses were carried out to decipher functions of these target genes. Results demonstrated that miR-10b-5p was down-regulated in breast cancer and low expression of miR-10b-5p was significantly correlated to worse outcome. Five genes, BIRC5, E2F2, KIF2C, FOXM1, and MCM5, were considered as potential key target genes of miR-10b-5p. As expected, higher expression levels of these genes were observed in breast cancer tissues than in normal tissues. Moreover, analysis from CHAT revealed that these genes were mainly involved in sustaining proliferative signaling in cancer development. In addition, PPI networks analysis revealed strong interactions between target genes. GO, KEGG, and Reactome pathway analysis suggested that these target genes of miR-10b-5p in breast cancer were significantly involved in cell cycle. Predicted target genes were further validated by qRT-PCR analysis in human breast cancer cell line MDA-MB-231 transfected with miR-10b mimic or antisense inhibitors. Taken together, our data suggest that miR-10b-5p functions to impede breast carcinoma progression via regulation of its key target genes and hopefully serves as a potential diagnostic and prognostic marker for breast cancer.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2261
Author(s):  
Nidhi Gupta ◽  
Abhishek Kanojia ◽  
Arpana Katiyar ◽  
Yashwanti Mudgil

Salt stress is considered to be the most severe abiotic stress. High soil salinity leads to osmotic and ionic toxicity, resulting in reduced plant growth and crop production. The role of G-proteins during salt stresses is well established. AGB1, a G-protein subunit, not only plays an important role during regulation of Na+ fluxes in roots, but is also involved in the translocation of Na+ from roots to shoots. N-Myc Downregulated like 1 (NDL1) is an interacting partner of G protein βγ subunits and C-4 domain of RGS1 in Arabidopsis. Our recent in-planta expression analysis of NDL1 reported changes in patterns during salt stress. Based on these expression profiles, we have carried out functional characterization of the AGB1-NDL1 module during salinity stress. Using various available mutant and overexpression lines of NDL1 and AGB1, we found that NDL1 acts as a negative regulator during salt stress response at the seedling stage, an opposite response to that of AGB1. On the other hand, during the germination phase of the plant, this role is reversed, indicating developmental and tissue specific regulation. To elucidate the mechanism of the AGB1-NDL1 module, we investigated the possible role of the three NDL1 stress specific interactors, namely ANNAT1, SLT1, and IDH-V, using yeast as a model. The present study revealed that NDL1 acts as a modulator of salt stress response, wherein it can have both positive as well as negative functions during salinity stress. Our findings suggest that the NDL1 mediated stress response depends on its developmental stage-specific expression patterns as well as the differential presence and interaction of the stress-specific interactors.


Oncotarget ◽  
2016 ◽  
Vol 7 (38) ◽  
pp. 61366-61377 ◽  
Author(s):  
Zhao Li ◽  
Wenzhuo Zhu ◽  
Liwen Xiong ◽  
Xiaobo Yu ◽  
Xi Chen ◽  
...  

Genome ◽  
2011 ◽  
Vol 54 (1) ◽  
pp. 10-18 ◽  
Author(s):  
Jenna L. Woody ◽  
Andrew J. Severin ◽  
Yung-Tsi Bolon ◽  
Bindu Joseph ◽  
Brian W. Diers ◽  
...  

Studies have indicated that exon and intron size and intergenic distance are correlated with gene expression levels and expression breadth. Previous reports on these correlations in plants and animals have been conflicting. In this study, next-generation sequence data, which has been shown to be more sensitive than previous expression profiling technologies, were generated and analyzed from 14 tissues. Our results revealed a novel dichotomy. At the low expression level, an increase in expression breadth correlated with an increase in transcript size because of an increase in the number of exons and introns. No significant changes in intron or exon sizes were noted. Conversely, genes expressed at the intermediate to high expression levels displayed a decrease in transcript size as their expression breadth increased. This was due to smaller exons, with no significant change in the number of exons. Taking advantage of the known gene space of soybean, we evaluated the positioning of genes and found significant clustering of similarly expressed genes. Identifying the correlations between the physical parameters of individual genes could lead to uncovering the role of regulation owing to nucleotide composition, which might have potential impacts in discerning the role of the noncoding regions.


2018 ◽  
Vol 143 (2) ◽  
pp. 101-109
Author(s):  
Jiaqi Hu ◽  
Hye-Ji Kim ◽  
Houbin Chen ◽  
Biyan Zhou

Short vegetative phase (SVP), a MADS-domain transcription factor, was shown to act as a repressor of flowering in arabidopsis (Arabidopsis thaliana). Although the role of SVPs in flowering is well characterized in the model plant arabidopsis, little is known in evergreen woody litchi (Litchi chinensis). In this study, three litchi SVP homologs (LcSVP1, LcSVP2, and LcSVP3) were cloned, and the bioinformatic analysis of the LcSVPs was carried out to identify their molecular characteristics. Their expression patterns in the apical meristem (AM) during the transition from vegetative to reproductive phase were studied under natural flowering inductive conditions. Also, brassinosteroid (BR) treatment under low temperature conditions was performed to elucidate the role of LcSVPs in the BR-regulated flowering. The results showed that LcSVPs belonged to the MADS superfamily. LcSVP relative expression levels in AMs of the early- and late-flowering cultivars showed decreasing trends with the transition from vegetative to reproductive growth. Under low temperature condition, relative expression levels of LcSVP1, LcSVP2, and LcSVP3 in AMs or panicle primordia showed decreasing trends, whereas those in the AMs of the BR-treated trees remained at relatively high levels. Relative expression analysis of the litchi homolog, flowering locus t 1 (LcFT1), showed that the BR-treated leaves had lower relative expression level than nontreated control leaves. The findings suggest that LcSVPs act as repressors involved in flowering in natural conditions and the BR-regulated flowering.


mSphere ◽  
2017 ◽  
Vol 2 (4) ◽  
Author(s):  
Ryuichi Nakano ◽  
Akiyo Nakano ◽  
Hisakazu Yano ◽  
Ryoichi Okamoto

ABSTRACT CFE-1 is a unique plasmid-encoded AmpC β-lactamase with the regulator gene ampR. It imparts high resistance to most cephalosporins with constitutive high-level β-lactamase activity. CFE-1 is a unique plasmid-encoded AmpC β-lactamase with the regulator gene ampR. It imparts high resistance to most cephalosporins with constitutive high-level β-lactamase activity. Here, the β-lactamase activities and expression levels of ampC with or without ampR were investigated. Results suggested that the resistance of CFE-1 to cephalosporins is caused by a substitution in AmpR, in which the Asp at position 135 is modified to Ala to allow the constitutive high-level expression (derepression) of ampC.


Sign in / Sign up

Export Citation Format

Share Document