Copper(II) and Palladium(II) Complexes with Cytotoxic and Antibacterial Activity

2012 ◽  
Vol 65 (7) ◽  
pp. 860 ◽  
Author(s):  
Anwen M. Krause-Heuer ◽  
Peter Leverett ◽  
Albert Bolhuis ◽  
Janice R. Aldrich-Wright

The synthesis of eight square pyramidal copper complexes with general structure [Cu(IL)(AL)H2O]2+, where IL represents various methylated 1,10-phenanthrolines, and AL represents either 1S,2S- or 1R,2R-diaminocyclohexane, is reported, with the complexes synthesised as both the perchlorate and chloride salts. The crystal structures of [Cu(1,10-phenanthroline)(1S,2S-diaminocyclohexane](ClO4)2·H2O and [Cu(5,6-dimethyl-1,10-phenanthroline)(1S,2S-diaminocyclohexane](ClO4)2·1.5H2O are reported. Four square planar palladium complexes with general structure [Pd(IL)(AL)]Cl2 have also been synthesised. These complexes were synthesised in order to investigate the structure–activity relationship against both cancer cell lines and bacterial cultures. The copper complexes display anticancer activity similar to cisplatin and 1,10-phenanthroline (phen) in the L1210 murine leukaemia cell line. Methylation of the phen increased the copper complex cytotoxicity by approximately four-fold, compared with the non-methylated complex. No significant difference in activity was observed by altering the chirality of the diaminocyclohexane ligand. The copper complexes demonstrated antibacterial activity against Bacillus subtilis, Staphylococcus aureus, and Escherichia coli; however, high levels of toxicity (30–60 % of death) were observed in the nematode Caenorhabditis elegans. The copper complexes have also been shown to act as DNA nucleases, with the ability to cleave plasmid DNA in the presence of hydrogen peroxide. The palladium complexes all have half maximal inhibitory concentration (IC50) values of ~10 μM in the L1210 cell line, with no significant difference in the cytotoxicity of any of the compounds tested. Minimal antibacterial activity of the palladium complexes was observed.

2004 ◽  
Vol 59 (9-10) ◽  
pp. 663-672 ◽  
Author(s):  
Silvia Regina Tozado Prado ◽  
Valdir Cechinel-Filho ◽  
Fátima Campos Buzzi ◽  
Rogério Corrêa ◽  
Silvia Maria Correia Suter Cadena ◽  
...  

Abstract Cyclic imides such as succinimides, maleimides, glutarimides, phthalimides and their derivatives contain an imide ring and a general structure -CO-N(R)-CO- that confers hydrophobicity and neutral characteristic. A diversity of biological activities and pharmaceutical uses have been attributed to them, such as antibacterial, antifungal, antinociceptive, anticonvulsant, antitumor. In spite of these activities, much of their action mechanisms at molecular and cellular levels remain to be elucidated. We now show the effects of several related cyclic imides: maleimides (S2, S2.1, S2.2, S3), glutarimides (S4, S5, S6), 4-aminoantipyrine derivatives (L1, F1, AL1, F1.14, F1.2) and sulfonated succinimides (RO1, FA, FE, FD, MC, DMC) on isolated rat liver mitochondria, B16-F10 melanoma cell line, peritoneal macrophages and different bacterial streams. The effects on mitochondrial respiratory parameters, cell viability and antibacterial activity were also evaluated. The results indicated that S3, S5 and S6 caused an increased oxygen consumption in the presence of ADP (state III) or its absence (state IV), while all other compounds decreased those parameters at different degrees of inhibition. All the compounds decreased the respiratory control coefficient (RCC). Loss of cell viability of peritoneal macrophages and the B16- F10 cell line was observed, L1 and S2.1 being more effective. S1, S2, S3, L1 and F1 compounds showed antibacterial activity at experimental concentrations.


2021 ◽  
Vol 11 (6) ◽  
pp. 14316-14335

Three new palladium complexes based on 2-hydrazinopyridine (hzpy) ligand, coupled with oxalate (ox), malonate (ma) and pyrophosphate (pyph) ligands, were prepared; [Pd(hzpy)(ox)], [Pd(hzpy)(ma)] and [Pd(hzpy)(pyph)]. The spectroscopic and thermal studies of the complexes suggested that the complexes were of square planar geometry. The complexes were thermally stable with an overall activation energy of 678, 981, and 633 kJ mol–1 for [Pd(hzpy)(ox)]. [Pd(hzpy)(ma)] and [Pd(hzpy)(pyph)], respectively. Geometric optimization of the three complexes was performed at DFT/B3LYP/SDD level through Gaussian 09. TDDFT and frequency calculations were studied to investigate the electronic and vibrational transitions. The potential in vitro cytotoxic activities of the three complexes was studied. The complexes exhibited a moderate cytotoxic effect against four cancer cell lines; MCF-7 (human breast cancer cell line), HepG-2 (human Hepatocellular carcinoma), PC-3 cells (human prostate carcinoma), and HEP-2 (Larynx carcinoma). The IC50 values of the three complexes exhibited a good performance against PC-3 cell line with low IC50 values reached 2.87 μg/ml for [Pd(hzpy)(ox)] compared to the IC50 of Vinblastine sulfate (42.4 μg/ml).


Author(s):  
Dorota Łubgan ◽  
Zofia Jóźwiak ◽  
Gerhard Grabenbauer ◽  
Luitpold Distel

AbstractNeoplastic cells frequently have an increased number of transferrin receptors. Coupling transferrin to an anti-neoplastic drug has the potential to overcome multidrug resistance (MDR). The purpose of this study was to examine the distribution and action of doxorubicin-transferrin conjugate (DOXTRF) in a leukaemia cell line (HL60), a multidrug-resistant leukaemia cell line (HL60ADR) and a normal tissue cell line (human fibroblasts). The intracellular accumulation of DOX and DOX-TRF was monitored by direct fluorescence. More DOX-TRF than free DOX was delivered to the tumour cells, and consecutively the levels of DNA double-strand breaks and apoptosis increased even in the multidrug-resistant cell line. In the normal tissue cell line, DOX-TRF did not accumulate, and therefore, the levels of DNA double-strand breaks and apoptosis did not increase. Cell viability was determined using the MTT assay. The IC50 for DOX-TRF was lower than the IC50 value for the free drug in both leukaemia cell lines. The IC50 values for the HL60 cells were 0.08 μM for DOX and 0.02 μM for DOX-TRF. The IC50 values for HL60ADR cells were 7 μM for DOX and 0.035 μM for DOX-TRF. In conclusion, DOX-TRF was able to overcome MDR in the leukaemia cell lines while having only a very limited effect on normal tissue cells.


2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


2020 ◽  
Vol 20 (18) ◽  
pp. 2316-2323 ◽  
Author(s):  
Alican Kusoglu ◽  
Bakiye G. Bagca ◽  
Neslihan P.O. Ay ◽  
Guray Saydam ◽  
Cigir B. Avci

Background: Ruxolitinib is a selective JAK1/2 inhibitor approved by the FDA for myelofibrosis in 2014 and nowadays, comprehensive investigations on the potential of the agent as a targeted therapy for haematological malignancies are on the rise. In multiple myeloma which is a cancer of plasma cells, the Interleukin- 6/JAK/STAT pathway is emerging as a therapeutic target since the overactivation of the pathway is associated with poor prognosis. Objective: In this study, our purpose was to discover the potential anticancer effects of ruxolitinib in ARH-77 multiple myeloma cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Methods: Cytotoxic effects of ruxolitinib in ARH-77 and NCI-BL 2171 cells were determined via WST-1 assay. The autophagy mechanism induced by ruxolitinib measured by detecting autophagosome formation was investigated. Apoptotic effects of ruxolitinib were analyzed with Annexin V-FITC Detection Kit and flow cytometry. We performed RT-qPCR to demonstrate the expression changes of the genes in the IL-6/JAK/STAT pathway in ARH-77 and NCI-BL 2171 cells treated with ruxolitinib. Results: We identified the IC50 values of ruxolitinib for ARH-77 and NCI-BL 2171 as 20.03 and 33.9μM at the 72nd hour, respectively. We showed that ruxolitinib induced autophagosome accumulation by 3.45 and 1.70 folds in ARH-77 and NCI-BL 2171 cells compared to the control group, respectively. Treatment with ruxolitinib decreased the expressions of IL-6, IL-18, JAK2, TYK2, and AKT genes, which play significant roles in MM pathogenesis. Conclusion: All in all, ruxolitinib is a promising agent for the regulation of the IL-6/JAK/STAT pathway and interferes with the autophagy mechanism in MM.


2019 ◽  
Vol 19 (8) ◽  
pp. 1037-1047 ◽  
Author(s):  
Jihene Elloumi-Mseddi ◽  
Dhouha Msalbi ◽  
Raouia Fakhfakh ◽  
Sami Aifa

Background:Drug repositioning is becoming an ideal strategy to select new anticancer drugs. In particular, drugs treating the side effects of chemotherapy are the best candidates.Objective:In this present work, we undertook the evaluation of anti-tumour activity of two anti-diarrheal drugs (nifuroxazide and rifaximin).Methods:Anti-proliferative effect against breast cancer cells (MDA-MB-231, MCF-7 and T47D) was assessed by MTT analysis, the Brdu incorporation, mitochondrial permeability and caspase-3 activity.Results:Both the drugs displayed cytotoxic effects on MCF-7, T47D and MDA-MB-231 cells. The lowest IC50 values were obtained on MCF-7 cells after 24, 48 and 72 hours of treatment while T47D and MDA-MB-231 were more resistant. The IC50 values on T47D and MDA-MB-231 cells became significantly low after 72 hours of treatment showing a late cytotoxicity effect especially of nifuroxazide but still less important than that of MCF-7 cells. According to the IC50 values, the non-tumour cell line HEK293 seems to be less sensitive to cytotoxicity especially against rifaximin. Both the drugs have shown an accumulation of rhodamine 123 as a function of the rise of their concentrations while the Brdu incorporation decreased. Despite the absence of a significant difference in the cell cycle between the treated and non-treated MCF-7 cells, the caspase-3 activity increased with the drug concentrations rise suggesting an apoptotic effect.Conclusion:Nifuroxazide and rifaximin are used to overcome the diarrheal side effect of anticancer drugs. However, they have shown to be anti-tumour drugs which make them potential dual effective drugs against cancer and the side effects of chemotherapy.


1989 ◽  
Vol 17 (1) ◽  
pp. 65-74 ◽  
Author(s):  
C. Sutton ◽  
P. Depledge ◽  
L. Bawden ◽  
A. Carne ◽  
M. Meltzer ◽  
...  

1982 ◽  
Vol 46 (3) ◽  
pp. 392-396 ◽  
Author(s):  
K Totsuka ◽  
K Oshimi ◽  
H Mizoguchi

2016 ◽  
Vol 95 (13) ◽  
pp. 1487-1493 ◽  
Author(s):  
N. Hirose ◽  
R. Kitagawa ◽  
H. Kitagawa ◽  
H. Maezono ◽  
A. Mine ◽  
...  

An experimental cavity disinfectant (ACC) that is intended to be used for various direct and indirect restorations was prepared by adding an antibacterial monomer 12-methacryloyloxydodecylpyridinum bromide (MDPB) at 5% into 80% ethanol. The antibacterial effectiveness of ACC and its influences on the bonding abilities of resin cements were investigated. To examine the antibacterial activity of unpolymerized MDPB, the minimum inhibitory and bactericidal concentrations (MIC and MBC) were determined for Streptococcus mutans, Lactobacillus casei, Actinomyces naeslundii, Parvimonas micra, Enterococcus faecalis, Fusobacterium nucleatum, and Porphyromonas gingivalis. Antibacterial activities of ACC and the commercial cavity disinfectant containing 2% chlorhexidine and ethanol (CPS) were evaluated by agar disk diffusion tests through 7 bacterial species and by MIC and MBC measurement for S. mutans. The effects of ACC and CPS to kill bacteria in dentinal tubules were compared with an S. mutans–infected dentin model. Shear bond strength tests were used to examine the influences of ACC on the dentin-bonding abilities of a self-adhesive resin cement and a dual-cure resin cement used with a primer. Unpolymerized MDPB showed strong antibacterial activity against 7 oral bacteria. ACC produced inhibition zones against all bacterial species similar to CPS. For ACC and CPS, the MIC value for S. mutans was identical, and the MBC was similar with only a 1-step dilution difference (1:2). Treatment of infected dentin with ACC resulted in significantly greater bactericidal effects than CPS ( P < 0.05, analysis of variance and Tukey’s honest significant difference test). ACC showed no negative influences on the bonding abilities to dentin for both resin cements, while CPS reduced the bond strength of the self-adhesive resin cement ( P < 0.05). This study clarified that the experimental cavity disinfectant containing 5% MDPB is more effective in vitro than the commercially available chlorhexidine solution to eradicate bacteria in dentin, without causing any adverse influences on the bonding abilities of resinous luting cements.


Sign in / Sign up

Export Citation Format

Share Document