The expression pattern of the Pho1a genes encoding plastidic starch phosphorylase correlates with the degradation of starch during fruit ripening in green-fruited and red-fruited tomato species

2019 ◽  
Vol 46 (12) ◽  
pp. 1146 ◽  
Author(s):  
Maria A. Slugina ◽  
Anna V. Shchennikova ◽  
Elena Z. Kochieva

Genes encoding plastidic starch phosphorylase Pho1a were identified in 10 tomato species (Solanum section Lycopersicon). Pho1a genes showed higher variability in green-fruited than in red-fruited tomato species, but had an extremely low polymorphism level compared with other carbohydrate metabolism genes and an unusually low ratio of intron to exon single nucleotide polymorphisms (SNPs). In red-fruited species, Pho1a was expressed in all analysed tissues, including fruit at different developmental stages, with the highest level in mature green fruit, which is strong sink organ importing sucrose and accumulating starch. In green-fruited species Solanum peruvianum and Solanum arcanum, the Pho1a expression level was similar in mature green and ripe fruit, whereas in Solanum chmielewskii, it was higher in ripe fruit, and in Solanum habrochaites, the dynamics of fruit-specific Pho1a expression was similar to that in red-fruited tomatoes. During fruit development, in red-fruited Solanum lycopersicum, sucrose level was low, the monosaccharide content increased; in green-fruited S. peruvianum, the sucrose concentration increased and those of monosaccharides decreased. In both species, the starch content and Pho1a expression were downregulated. The evolutionary topology based on Pho1a sequences was consistent with the current division of tomatoes into red-fruited and green-fruited species, except for S. habrochaites.

Author(s):  
Gloria Pérez-Rubio ◽  
Luis Alberto López-Flores ◽  
Ana Paula Cupertino ◽  
Francisco Cartujano-Barrera ◽  
Luz Myriam Reynales-Shigematsu ◽  
...  

Previous studies have identified variants in genes encoding proteins associated with the degree of addiction, smoking onset, and cessation. We aimed to describe thirty-one single nucleotide polymorphisms (SNPs) in seven candidate genomic regions spanning six genes associated with tobacco-smoking in a cross-sectional study from two different interventions for quitting smoking: (1) thirty-eight smokers were recruited via multimedia to participate in e-Decídete! program (e-Dec) and (2) ninety-four attended an institutional smoking cessation program on-site. SNPs genotyping was done by real-time PCR using TaqMan probes. The analysis of alleles and genotypes was carried out using the EpiInfo v7. on-site subjects had more years smoking and tobacco index than e-Dec smokers (p < 0.05, both); in CYP2A6 we found differences in the rs28399433 (p < 0.01), the e-Dec group had a higher frequency of TT genotype (0.78 vs. 0.35), and TG genotype frequency was higher in the on-site group (0.63 vs. 0.18), same as GG genotype (0.03 vs. 0.02). Moreover, three SNPs in NRXN1, two in CHRNA3, and two in CHRNA5 had differences in genotype frequencies (p < 0.01). Cigarettes per day were different (p < 0.05) in the metabolizer classification by CYP2A6 alleles. In conclusion, subjects attending a mobile smoking cessation intervention smoked fewer cigarettes per day, by fewer years, and by fewer cumulative pack-years. There were differences in the genotype frequencies of SNPs in genes related to nicotine metabolism and nicotine dependence. Slow metabolizers smoked more cigarettes per day than intermediate and normal metabolizers.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Aner Mesic ◽  
Marija Rogar ◽  
Petra Hudler ◽  
Nurija Bilalovic ◽  
Izet Eminovic ◽  
...  

Abstract Background Single nucleotide polymorphisms (SNPs) in genes encoding mitotic kinases could influence development and progression of gastric cancer (GC). Methods Case-control study of nine SNPs in mitotic genes was conducted using qPCR. The study included 116 GC patients and 203 controls. In silico analysis was performed to evaluate the effects of polymorphisms on transcription factors binding sites. Results The AURKA rs1047972 genotypes (CT vs. CC: OR, 1.96; 95% CI, 1.05–3.65; p = 0.033; CC + TT vs. CT: OR, 1.94; 95% CI, 1.04–3.60; p = 0.036) and rs911160 (CC vs. GG: OR, 5.56; 95% CI, 1.24–24.81; p = 0.025; GG + CG vs. CC: OR, 5.26; 95% CI, 1.19–23.22; p = 0.028), were associated with increased GC risk, whereas certain rs8173 genotypes (CG vs. CC: OR, 0.60; 95% CI, 0.36–0.99; p = 0.049; GG vs. CC: OR, 0.38; 95% CI, 0.18–0.79; p = 0.010; CC + CG vs. GG: OR, 0.49; 95% CI, 0.25–0.98; p = 0.043) were protective. Association with increased GC risk was demonstrated for AURKB rs2241909 (GG + AG vs. AA: OR, 1.61; 95% CI, 1.01–2.56; p = 0.041) and rs2289590 (AC vs. AA: OR, 2.41; 95% CI, 1.47–3.98; p = 0.001; CC vs. AA: OR, 6.77; 95% CI, 2.24–20.47; p = 0.001; AA+AC vs. CC: OR, 4.23; 95% CI, 1.44–12.40; p = 0.009). Furthermore, AURKC rs11084490 (GG + CG vs. CC: OR, 1.71; 95% CI, 1.04–2.81; p = 0.033) was associated with increased GC risk. A combined analysis of five SNPs, associated with an increased GC risk, detected polymorphism profiles where all the combinations contribute to the higher GC risk, with an OR increased 1.51-fold for the rs1047972(CT)/rs11084490(CG + GG) to 2.29-fold for the rs1047972(CT)/rs911160(CC) combinations. In silico analysis for rs911160 and rs2289590 demonstrated that different transcription factors preferentially bind to polymorphic sites, indicating that AURKA and AURKB could be regulated differently depending on the presence of particular allele. Conclusions Our results revealed that AURKA (rs1047972 and rs911160), AURKB (rs2241909 and rs2289590) and AURKC (rs11084490) are associated with a higher risk of GC susceptibility. Our findings also showed that the combined effect of these SNPs may influence GC risk, thus indicating the significance of assessing multiple polymorphisms, jointly. The study was conducted on a less numerous but ethnically homogeneous Bosnian population, therefore further investigations in larger and multiethnic groups and the assessment of functional impact of the results are needed to strengthen the findings.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1948-1958 ◽  
Author(s):  
Elena Amendola ◽  
Remo Sanges ◽  
Antonella Galvan ◽  
Nina Dathan ◽  
Giacomo Manenti ◽  
...  

We report here the mapping of a chromosomal region responsible for strain-specific development of congenital hypothyroidism in mice heterozygous for null mutations in genes encoding Nkx2-1/Titf1 and Pax8. The two strains showing a differential predisposition to congenital hypothyroidism contain several single-nucleotide polymorphisms in this locus, one of which leads to a nonsynonymous amino acid change in a highly conserved region of Dnajc17, a member of the type III heat-shock protein-40 (Hsp40) family. We demonstrate that Dnajc17 is highly expressed in the thyroid bud and had an essential function in development, suggesting an important role of this protein in organogenesis and/or function of the thyroid gland.


2018 ◽  
Vol 52 ◽  
pp. 95-103 ◽  
Author(s):  
Paulina Wigner ◽  
Piotr Czarny ◽  
Ewelina Synowiec ◽  
Michał Bijak ◽  
Monika Talarowska ◽  
...  

AbstractBackground:Numerous data suggests that the disorders of tryptophan catabolites (TRYCATs) pathway, including a decreased level of tryptophan or evaluated concentration of harmful TRYCATs −kynurenine, quinolinic acid, 3-hydroxyanthranilic acid, 3-hydroxytryptophan − may cause the occurrence of DD symptoms. In this work, we assessed the relationship between single-nucleotide polymorphisms (SNPs) of KAT1, KAT2 and IDO1 gene encoding, and the risk of depression development. Our study was performed on the DNA isolated from peripheral blood of 281 depressed patients and 236 controls. We genotyped, by using TaqMan probes, four polymorphisms: c.*456G > A of KAT1 (rs10988134), c.975-7T > C of AADAT (rs1480544), c.-1849C > A (rs3824259) and c.-1493G > C(rs10089084)of IDO1. We found that only the A/A genotype of c.*456G > A − KAT1 (rs10988134) increased the risk of depression occurrence. Interestingly, when we stratified the study group according to gender, this relationship was present only in male population. However, a gene–gene analysis revealed a link between the T/T-C/C genotype of c.975-7T > C − AADAT (rs1480544)or c.-1493G > C − IDO1 (rs10089084) and C/C-C/A genotype of c.975-7T > C − AADAT (rs1480544)and c. −1849C > A − IDO1 (rs3824259) and the disease. Moreover, we found, that the c.975-7T > C − AADAT and c. *456G > A KAT1 (rs10988134) polymorphisms may modulate the effectiveness of selective serotonin reuptake inhibitors therapy. Concluding, our results confirm the hypothesis formulated in our recently published article that the SNPs of genes involved in TRYCATs pathway may modulate the risk of depression. This provides some further evidence that the pathway plays the crucial role in development of the disease.


2020 ◽  
Vol 32 (2) ◽  
pp. 192
Author(s):  
S. H. A. Raza ◽  
L. Zan

The Src homology 2B 2 (SH2B2) gene regulates energy balance and body weight at least partially by enhancing Janus kinase-2 (JAK2)-mediated cytokine signalling, including leptin or GH signalling. Leptin is an adipose hormone that controls body weight. The objective of the current study was to evaluate the association between body measurement traits and SH2B2 gene polymorphisms. For this purpose, we selected four single-nucleotide polymorphisms (SNPs) in the SH2B2 gene, including two in intron 5 (A20545G and G20570A), one synonymous SNP (T20693C) in exon 6, and one in intron 8 (C24070A), and genotyped these through DNA sequencing in Qinchuan cattle. The general linear model (GLM) in SPSS 20.0 software (SPSS Inc.) was used for the association analysis between SNPs and selected traits of carcass quality. The SNPs in sample populations were in medium polymorphism level (0.250&lt;pic&lt;0.500). This association study indicated that the G20570A, T20693C, and C24070A were significantly (P&lt;0.05) associated with body length (BL) and chest circumference (CC) in Qinchuan cattle. In addition, the H4H3 and H5H5 diplotype were associated with significantly (P=0.01) greater BL and rump length than was H4H2. Our investigation will not only extend understanding of genetic variations in the bovine SH2B2 gene but also provide useful information for marker-assisted selection in beef cattle breeding programs.


2019 ◽  
Vol 22 (6) ◽  
pp. 564-570 ◽  
Author(s):  
Helen Kedward-Dixon ◽  
Emi N Barker ◽  
Séverine Tasker ◽  
Anja Kipar ◽  
Christopher R Helps

Objectives Feline infectious peritonitis (FIP) is a high mortality infectious disease. Single nucleotide polymorphisms (SNPs) in the genes encoding interferon gamma ( IFNG), tumour necrosis factor alpha ( TNFA) and dendritic cell-specific intercellular adhesion molecule-grabbing non-integrin (DC-SIGN; CD209) have been associated with increased and decreased risk of developing FIP. This study was designed to determine whether these associations were present in a UK population of pedigree cats using samples from cats euthanased with a confirmed diagnosis (FIP, n = 22; non-FIP, n = 10) or clinically healthy cats over 11 years of age (n = 3). Methods DNA was extracted from tissue (n = 32) or blood (n = 3) and PCR performed for regions of IFNG, TNFA and CD209. PCR amplicons were sequenced, each SNP genotype was determined, and genotype/allele frequency for each SNP and FIP status were compared. Results No significant association was found between the genotype and FIP status for any SNP analysed. There was a trend for the heterozygous CT genotype at both IFNG g.401 and IFNG g.408 to be associated with FIP ( P = 0.13), but this genotype was also found in a substantial proportion of non-FIP cats. There was also a trend for the heterozygous CT genotype at IFNG g.428 to be associated with FIP ( P = 0.06), although most cats with FIP had the CC genotype at this locus. No associations were found between any allele at TNFA g.-421, CD209 g.1900, CD209 g.2276, CD209 g.2392 and CD209 g.2713 and FIP. Conclusions and relevance The use of the IFNG, TNFA and CD209 SNPs described to predict the risk of FIP cannot currently be recommended.


2021 ◽  
Author(s):  
So-Hyeon Bong ◽  
Ganghee Cho ◽  
Dong-Seon Kim ◽  
Sunggil Kim

Abstract Self-incompatibility (SI) responses of radish (Raphanus sativus L.) are determined by two tightly linked genes encoding an S receptor kinase (SRK) and an S-locus cysteine-rich protein/S locus protein 11 (SCR/SP11), respectively. A radish showing an almost self-compatible (SC) phenotype was identified in this study. Inheritance patterns showed that this SC phenotype was dominant over an SI phenotype. In addition, this SC phenotype co-segregated with an S haplotype in an F2 population. This SC radish contained an RsS-26 haplotype in which duplicate SRK-like genes were previously identified. Full-length sequences of two SRK-like genes of 18,133-bp and 6,200-bp in length were obtained from radish with the RsS-26 haplotype (designated as RsSRK-26-1 and RsSRK-26-2, respectively). Duplicate SCR/SP11-like genes were also identified in the radish with the RsS-26 haplotype. Phylogenetic analyses indicated that both duplicate SRK-like and SCR/SP11-like genes were closely related to other known SRK and SCR/SP11 genes, respectively. No critical mutation was found in the coding region of SRK-like or SCR/SP11-like gene. However, a 4,146-bp intact LTR-retrotransposon was identified in the third intron of RsSRK-26-1 of the SC radish. Interestingly, this LTR-retrotransposon was not detected in three other breeding lines containing the same RsS-26 haplotype. Except for this LTR-retrotransposon, only two single nucleotide polymorphisms (SNPs) were identified in intronic regions between normal and mutant RsSRK-26-1 alleles. While normal transcription was observed for radish showing RsSRK-26-1 and SI phenotypes in these three breeding lines, no transcript of RsSRK-26-1 was detected in the SC radish, suggesting that recent transposition of an LTR-retrotransposon in the RsSRK-26-1 gene might be responsible for the SC phenotype of radish.


2020 ◽  
Vol 23 (10) ◽  
pp. 1032-1040
Author(s):  
Fezile Ozdemir ◽  
Emrah Dural ◽  
Nilay Sedes Baskak ◽  
Yağmur Kır ◽  
Bora Baskak ◽  
...  

Aims and Objective: The plasma level of mirtazapine (MIR) varies between individuals primarily depending on the differences in metabolism during pharmacotherapy. CYP2D6 takes the role as a major enzyme in MIR metabolism and POR enzyme donates an electron to CYP2D6 for its activity. Single nucleotide polymorphisms in the genes encoding pharmacokinetic enzymes may cause changes in enzyme activity, leading to differences in metabolism of the drug. Our aim was to assess the influence of CYP2D6*4 and POR*28 polymorphisms on MIR plasma levels in Turkish psychiatric patients. Materials and Methods: The association between genetic variations and plasma level of MIR was investigated on 54 patients. CYP2D6*4 and POR*28 polymorphisms were analysed using Polymerase Chain Reaction- Restriction Fragment Length Polymorphism (PCR-RFLP) and plasma MIR levels were measured using HPLC. Results: Allele frequencies of CYP2D6*4 and POR*28 were 0.11 and 0.39, respectively in the study population. The results showed that CYP2D6*4 allele carriers have higher C/D MIR levels while POR*28 allele carriers have lower C/D MIR levels. Combined genotype analyses also revealed that individuals with CYP2D6*1/*1 - POR*28/*28 genotype have a statistically lower C/D MIR level (0.95 ng/ml/dose) when compared with individuals with CYP2D6*1/*1 - POR*1/*1 genotype (1.52 ng/ml/dose). Conclusion: Our results indicate that CYP2D6*4 and POR*28 polymorphisms may have a potential in the explanation of differences in plasma levels in MIR treated psychiatric patients. A combination of these variations may be beneficial in increasing drug response and decreasing adverse drug reactions in MIR psychopharmacotherapy.


2017 ◽  
Vol 35 (6_suppl) ◽  
pp. 485-485
Author(s):  
Maria Bassanelli ◽  
Alessandra Felici ◽  
Michele Milella ◽  
Diana Giannarelli ◽  
Silvana Giacinti ◽  
...  

485 Background: Currently there are no biomarkers to predict either toxicity or activity of targeted therapy in mRCC. The aim of this study was to correlate single nucleotide polymorphisms (SNPs) of genes encoding for efflux transporters and metabolizing enzymes with sunitinib toxicity in metastatic renal cell carcinoma (mRCC) patients (pts). Methods: We conducted an observational, retrospective analysis of 60 Caucasian pts who received sunitinib for mRCC from 2 Italian institutions. Correlation between adverse events (AE, according to CTCAE v.4.0) and 4 polymorphisms in 3 genes (ABCB1 [1236C>T, 3435C>T], CYP3A5*3 6986A>G, CYP3A4*1B-392A>G) was analyzed. SNPs were detected in blood samples using pyrosequencing technique. Association between SNPs and toxicities was evaluated using the Chi Square test. Results: 60pts (median age: 61 years; male: 63.3%) with mRCC (clear cell: 85%, other histologies: 15%) were treated with sunitinib (83.3% as first-line). The most common AE (any-grade) reported were: hypertension (85%), asthenia (83.3%), hypothyroidism (65%), anemia (61.6%), nausea/vomiting (60%), stomatitis (58.3%), diarrhoea (48.3%), neutropenia (48.3%), thrombocytopenia (46.7%), leukopenia (46.7%), hypertriglyceridemia (45%), hyperglycaemia (38.4%), hypercholesterolemia (35%), and hand-foot syndrome (35%). Treatment was discontinued and sunitinib dose was reduced due to AE in 28.3% and 61.7% of pts, respectively. The G/A-variant in CYP3A5*3 was associated with thrombocytopenia (any grade, p=0.03); homozygous C/C alleles in ABCB1 1236C>T significantly correlated with leukopenia (any grade, p=0.01), while the C/C genotype in ABCB1 3435C>T was associated with hypertension (grade≥3, p=0.05); hypertriglyceridemia showed a trend towards increased prevalence in the presence of the C allele (grade≥3, p=0.08). Conclusions: Polymorphisms in ABCB1 and CYP3A5*3 are predictive of toxicity, as hypertension, leukopenia, and thrombocytopenia in pts with mRCC treated with sunitinib. This analysis could support the selection of the more appropriate drug to the individual patient.


Sign in / Sign up

Export Citation Format

Share Document