scholarly journals Molecular mechanism of leukocidin GH–integrin CD11b/CD18 recognition and species specificity

2019 ◽  
Vol 117 (1) ◽  
pp. 317-327 ◽  
Author(s):  
Nikolina Trstenjak ◽  
Dalibor Milić ◽  
Melissa A. Graewert ◽  
Harald Rouha ◽  
Dmitri Svergun ◽  
...  

Host–pathogen interactions are central to understanding microbial pathogenesis. The staphylococcal pore-forming cytotoxins hijack important immune molecules but little is known about the underlying molecular mechanisms of cytotoxin–receptor interaction and host specificity. Here we report the structures of a staphylococcal pore-forming cytotoxin, leukocidin GH (LukGH), in complex with its receptor (the α-I domain of complement receptor 3, CD11b-I), both for the human and murine homologs. We observe 2 binding interfaces, on the LukG and the LukH protomers, and show that human CD11b-I induces LukGH oligomerization in solution. LukGH binds murine CD11b-I weakly and is inactive toward murine neutrophils. Using a LukGH variant engineered to bind mouse CD11b-I, we demonstrate that cytolytic activity does not only require binding but also receptor-dependent oligomerization. Our studies provide an unprecedented insight into bicomponent leukocidin–host receptor interaction, enabling the development of antitoxin approaches and improved animal models to explore these approaches.

2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Liang ◽  
Yuan Chen ◽  
Xia Li ◽  
Fengxia Guo ◽  
Jiachen Sun ◽  
...  

Postharvest processing plays a very important role in improving the quality of traditional Chinese medicine. According to previous studies, smoke-drying could significantly promote the accumulation of the bioactive components and pharmacological activities of rhubarb, but so far, the molecular mechanism has not been studied yet. In this research, to study the molecular mechanisms of postharvest processing for rhubarb during shade-drying and smoke-drying, label-free proteomic analyses were conducted. In total, 1,927 differentially abundant proteins (DAPs) were identified from rhubarb samples treated by different drying methods. These DAPs were mainly involved in response and defense, signal transduction, starch, carbohydrate and energy metabolism, and anthraquinone and phenolic acid biosynthesis. Smoke-drying significantly enhanced the expression of proteins involved in these metabolic pathways. Accordingly, the molecular mechanism of the accumulation of effective ingredients of rhubarb was clarified, which provided a novel insight into the biosynthesis of active ingredients that occur during the rhubarb dry process.


2018 ◽  
Author(s):  
Katherine S. Lehmann ◽  
Alynda Wood ◽  
Diana Cummings ◽  
Li Bai ◽  
Beth Stevens ◽  
...  

AbstractThe olfactory system depends upon organizational maps that are developmentally refined and maintained, however the cellular and molecular mechanisms that underlie these processes are unknown. Studies have shown that microglia and complement molecules are important for the developmental refinement of circuitry within the visual system, thus we asked whether they played a similar role in the olfactory system through the formation of the olfactory bulb (OB) maps, the glomerular and intrabulbar maps. Our findings revealed that microglia in mature animals engulf olfactory sensory neuron (OSN) axons and the synaptic terminals of tufted cells in the glomerular and intrabulbar maps respectively, suggesting microglia could anatomically shape the mature OB circuitry. To determine the mechanisms underlying this axonal pruning activity we used complement 3 (C3) and complement receptor 3 (CR3) knockout mice to investigate if C3 signaling was necessary for precise OB map development. Our results demonstrate that glomerular and intrabulbar map disorganization as typically present in early postnatal mice persists into adulthood when C3 signaling is disrupted. These data clearly establish the C3/CR3 pathway as necessary for the proper developmental refinement of both olfactory maps. We further present the olfactory system as a unique platform to study the role of glia in the development and adult refinement of regenerating circuits.


mBio ◽  
2022 ◽  
Author(s):  
Christopher J. Day ◽  
Rachael L. Hardison ◽  
Belinda L. Spillings ◽  
Jessica Poole ◽  
Joseph A. Jurcisek ◽  
...  

In women, the lower female reproductive tract is the primary site for HIV infection. How HIV traverses the epithelium to infect CD4 T cells in the submucosa is ill-defined.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 795
Author(s):  
Lukas Gorecki ◽  
Martin Andrs ◽  
Jan Korabecny

Selective killing of cancer cells while sparing healthy ones is the principle of the perfect cancer treatment and the primary aim of many oncologists, molecular biologists, and medicinal chemists. To achieve this goal, it is crucial to understand the molecular mechanisms that distinguish cancer cells from healthy ones. Accordingly, several clinical candidates that use particular mutations in cell-cycle progressions have been developed to kill cancer cells. As the majority of cancer cells have defects in G1 control, targeting the subsequent intra‑S or G2/M checkpoints has also been extensively pursued. This review focuses on clinical candidates that target the kinases involved in intra‑S and G2/M checkpoints, namely, ATR, CHK1, and WEE1 inhibitors. It provides insight into their current status and future perspectives for anticancer treatment. Overall, even though CHK1 inhibitors are still far from clinical establishment, promising accomplishments with ATR and WEE1 inhibitors in phase II trials present a positive outlook for patient survival.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriela Elis Wachholz ◽  
Julia do Amaral Gomes ◽  
Juliano André Boquett ◽  
Fernanda Sales Luiz Vianna ◽  
Lavínia Schuler-Faccini ◽  
...  

Abstract Background Due to the diversity of studies in animal models reporting that molecular mechanisms are involved in the teratogenic effect of the Zika virus (ZIKV), the objective of the present study is to evaluate the methodological quality of these studies, as well as to demonstrate which genes and which molecular pathways are affected by ZIKV in different animal models. Methods This search will be performed in four databases: PubMed/MEDLINE, EMBASE, Web of Science, and Scopus, as well as in the grey literature. The studies selection process will be reported through the PRISMA Statement diagram model. All studies describing the molecular mechanisms possibly involved in the development of malformations caused by embryonic/fetal ZIKV exposure in animal models with an appropriate control group and methodology will be included (including, for instance, randomized and non-randomized studies). All animals used as experimental models for ZIKV teratogenesis may be included as long as exposure to the virus occurred during the embryonic/fetal period. From the selected studies, data will be extracted using a previously prepared standard form. Bias risk evaluation will be conducted following the SYRCLE’s Risk of Bias tool. All data obtained will be tabulated and organized by outcomes (morphological and molecular). Discussion With the proposed systematic review, we expect to present results about the methodological quality of the published studies with animal models that investigated the molecular mechanisms involved in the teratogenic effect of ZIKV, as well as to show the studies with greater reliability. Systematic review registration PROSPERO CRD42019157316


Genes ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1150
Author(s):  
Jana Tomc ◽  
Nataša Debeljak

Patients with idiopathic erythrocytosis are directed to targeted genetic testing including nine genes involved in oxygen sensing pathway in kidneys, erythropoietin signal transduction in pre-erythrocytes and hemoglobin-oxygen affinity regulation in mature erythrocytes. However, in more than 60% of cases the genetic cause remains undiagnosed, suggesting that other genes and mechanisms must be involved in the disease development. This review aims to explore additional molecular mechanisms in recognized erythrocytosis pathways and propose new pathways associated with this rare hematological disorder. For this purpose, a comprehensive review of the literature was performed and different in silico tools were used. We identified genes involved in several mechanisms and molecular pathways, including mRNA transcriptional regulation, post-translational modifications, membrane transport, regulation of signal transduction, glucose metabolism and iron homeostasis, which have the potential to influence the main erythrocytosis-associated pathways. We provide valuable theoretical information for deeper insight into possible mechanisms of disease development. This information can be also helpful to improve the current diagnostic solutions for patients with idiopathic erythrocytosis.


2021 ◽  
Vol 22 (8) ◽  
pp. 4209
Author(s):  
Karolina Kot ◽  
Natalia Łanocha-Arendarczyk ◽  
Michał Ptak ◽  
Aleksandra Łanocha ◽  
Elżbieta Kalisińska ◽  
...  

Leishmaniasis, malaria, toxoplasmosis, and acanthamoebiasis are protozoan parasitic infections. They remain important contributors to the development of kidney disease, which is associated with increased patients’ morbidity and mortality. Kidney injury mechanisms are not fully understood in protozoan parasitic diseases, bringing major difficulties to specific therapeutic interventions. The aim of this review is to present the biochemical and molecular mechanisms in kidneys infected with Leishmania spp., Plasmodium spp., Toxoplasma gondii, and Acanthamoeba spp. We present available mechanisms of an immune response, oxidative stress, apoptosis process, hypoxia, biomarkers of renal injury in the serum or urine, and the histopathological changes of kidneys infected with the selected parasites. Pathomechanisms of Leishmania spp. and Plasmodium spp. infections have been deeply investigated, while Toxoplasma gondii and Acanthamoeba spp. infections in the kidneys are not well known yet. Deeper knowledge of kidney involvement in leishmaniasis and malaria by presenting their mechanisms provides insight into how to create novel and effective treatments. Additionally, the presented work shows gaps in the pathophysiology of renal toxoplasmosis and acanthamoebiasis, which need further research.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kuo Yang ◽  
Jian-Ping An ◽  
Chong-Yang Li ◽  
Xue-Na Shen ◽  
Ya-Jing Liu ◽  
...  

AbstractJasmonic acid (JA) plays an important role in regulating leaf senescence. However, the molecular mechanisms of leaf senescence in apple (Malus domestica) remain elusive. In this study, we found that MdZAT10, a C2H2-type zinc finger transcription factor (TF) in apple, markedly accelerates leaf senescence and increases the expression of senescence-related genes. To explore how MdZAT10 promotes leaf senescence, we carried out liquid chromatography/mass spectrometry screening. We found that MdABI5 physically interacts with MdZAT10. MdABI5, an important positive regulator of leaf senescence, significantly accelerated leaf senescence in apple. MdZAT10 was found to enhance the transcriptional activity of MdABI5 for MdNYC1 and MdNYE1, thus accelerating leaf senescence. In addition, we found that MdZAT10 expression was induced by methyl jasmonate (MeJA), which accelerated JA-induced leaf senescence. We also found that the JA-responsive protein MdBT2 directly interacts with MdZAT10 and reduces its protein stability through ubiquitination and degradation, thereby delaying MdZAT10-mediated leaf senescence. Taken together, our results provide new insight into the mechanisms by which MdZAT10 positively regulates JA-induced leaf senescence in apple.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 836
Author(s):  
Ana Quelle-Regaldie ◽  
Daniel Sobrido-Cameán ◽  
Antón Barreiro-Iglesias ◽  
María Jesús Sobrido ◽  
Laura Sánchez

Autosomal recessive ataxias are much less well studied than autosomal dominant ataxias and there are no clearly defined systems to classify them. Autosomal recessive ataxias, which are characterized by neuronal and multisystemic features, have significant overlapping symptoms with other complex multisystemic recessive disorders. The generation of animal models of neurodegenerative disorders increases our knowledge of their cellular and molecular mechanisms and helps in the search for new therapies. Among animal models, the zebrafish, which shares 70% of its genome with humans, offer the advantages of being small in size and demonstrating rapid development, making them optimal for high throughput drug and genetic screening. Furthermore, embryo and larval transparency allows to visualize cellular processes and central nervous system development in vivo. In this review, we discuss the contributions of zebrafish models to the study of autosomal recessive ataxias characteristic phenotypes, behavior, and gene function, in addition to commenting on possible treatments found in these models. Most of the zebrafish models generated to date recapitulate the main features of recessive ataxias.


Marine Drugs ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 43
Author(s):  
Marco Mangiagalli ◽  
Marina Lotti

β-galactosidases (EC 3.2.1.23) catalyze the hydrolysis of β-galactosidic bonds in oligosaccharides and, under certain conditions, transfer a sugar moiety from a glycosyl donor to an acceptor. Cold-active β-galactosidases are identified in microorganisms endemic to permanently low-temperature environments. While mesophilic β-galactosidases are broadly studied and employed for biotechnological purposes, the cold-active enzymes are still scarcely explored, although they may prove very useful in biotechnological processes at low temperature. This review covers several issues related to cold-active β-galactosidases, including their classification, structure and molecular mechanisms of cold adaptation. Moreover, their applications are discussed, focusing on the production of lactose-free dairy products as well as on the valorization of cheese whey and the synthesis of glycosyl building blocks for the food, cosmetic and pharmaceutical industries.


Sign in / Sign up

Export Citation Format

Share Document