scholarly journals Mediator Complex Recruits Epigenetic Regulators via Its Two Cyclin-dependent Kinase Subunits to Repress Transcription of Immune Response Genes

2013 ◽  
Vol 288 (29) ◽  
pp. 20955-20965 ◽  
Author(s):  
Taiki Tsutsui ◽  
Rikiya Fukasawa ◽  
Kaori Shinmyouzu ◽  
Reiko Nakagawa ◽  
Kazuyuki Tobe ◽  
...  

The Mediator complex (Mediator) plays pivotal roles in activating transcription by RNA polymerase II, but relatively little is known about its roles in repression. Here, we identified the histone arginine methyltransferase PRMT5 and WD repeat protein 77/methylosome protein 50 (WDR77/MEP50) as Mediator cyclin-dependent kinase (CDK)-interacting proteins and studied the roles of PRMT5 in the transcriptional regulation of CCAAT enhancer-binding protein (C/EBP) β target genes. First, we purified CDK8- and CDK19-containing complexes from HeLa nuclear extracts and subjected these purified complexes to mass spectrometric analyses. These experiments revealed that two Mediator CDKs, CDK8 and CDK19, individually interact with PRMT5 and WDR77, and their interactions with PRMT5 cause transcriptional repression of C/EBPβ target genes by regulating symmetric dimethylation of histone H4 arginine 3 (H4R3me2s) in the promoter regions of those genes. Furthermore, the recruitment of the DNA methyltransferase DNMT3A correlated with H4R3 dimethylation potentially leading to DNA methylation at the promoter proximal region and tight inhibition of preinitiation complex formation. In vertebrates, C/EBPβ regulates many genes involved in immune responses and cell differentiation. These findings shed light on the molecular mechanisms of the repressive roles of Mediator CDKs in transcription of C/EBPβ target genes and might provide clues that enable future studies of the functional associations between Mediators and epigenetic regulation.

2021 ◽  
Author(s):  
Nina Kirstein ◽  
Sadat Dokaneheifard ◽  
Pradeep Reddy Cingaram ◽  
Monica Guiselle Valencia ◽  
Felipe Beckedorff ◽  
...  

MicroRNA (miRNA) homeostasis is crucial for the post-transcriptional regulation of their target genes and miRNA dysregulation has been linked to multiple diseases, including cancer. The molecular mechanisms underlying miRNA biogenesis from processing of primary miRNA transcripts to formation of mature miRNA duplex are well understood. Loading of miRNA duplex into members of the Argonaute (Ago) protein family, representing the core of the RNA-induced silencing complex (RISC), is pivotal to miRNA-mediated gene silencing. The Integrator complex has been previously shown to be an important regulator of RNA maturation, RNA polymerase II pause-release, and premature transcriptional termination. Here, we report that loss of Integrator results in global diminution of mature miRNAs. By incorporating 4-Thiouridine (s4U) in nascent transcripts, we traced miRNA fate from biogenesis to stabilization and identified Integrator to be essential for proper miRNA assembly into RISC. Enhanced UV crosslinking and immunoprecipitation (eCLIP) of Integrator confirms a robust association with mature miRNAs. Indeed, Integrator potentiates Ago2-mediated cleavage of target RNAs. These findings highlight an essential role for Integrator in miRNA abundance and RISC function.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yi Zhu ◽  
Ming Qiao ◽  
Jianhua Yang ◽  
Junping Hu

Objective. To holistically explore the latent active ingredients, targets, and related mechanisms of Hugan buzure granule (HBG) in the treatment of liver fibrosis (LF) via network pharmacology. Methods. First, we collected the ingredients of HBG by referring the TCMSP server and literature and filtered the active ingredients though the criteria of oral bioavailability ≥30% and drug-likeness index ≥0.18. Second, herb-associated targets were predicted and screened based on the BATMAN-TCM and SwissTargetPrediction platforms. Candidate targets related to LF were collected from the GeneCards and OMIM databases. Furthermore, the overlapping target genes were used to construct the protein-protein interaction network and “drug-compound-target-disease” network. Third, GO and KEGG pathway analyses were carried out to illustrate the latent mechanisms of HBG in the treatment of LF. Finally, the combining activities of hub targets with active ingredients were further verified based on software AutoDock Vina. Results. A total of 25 active ingredients and 115 overlapping target genes of HBG and LF were collected. Besides, GO enrichment analysis exhibited that the overlapping target genes were involved in DNA-binding transcription activator activity, RNA polymerase II-specific, and oxidoreductase activity. Simultaneously, the key molecular mechanisms of HBG against LF were mainly involved in PI3K-AKT, MAPK, HIF-1, and NF-κB signaling pathways. Also, molecular docking simulation demonstrated that the key targets of HBG for antiliver fibrosis were IL6, CASP3, EGFR, VEGF, and MAPK. Conclusion. This work validated and predicted the underlying mechanisms of multicomponent and multitarget about HBG in treating LF and provided a scientific foundation for further research.


2004 ◽  
Vol 24 (6) ◽  
pp. 2546-2559 ◽  
Author(s):  
Joshua P. Frederick ◽  
Nicole T. Liberati ◽  
David S. Waddell ◽  
Yigong Shi ◽  
Xiao-Fan Wang

ABSTRACT Smad proteins are the most well-characterized intracellular effectors of the transforming growth factor β (TGF-β) signal. The ability of the Smads to act as transcriptional activators via TGF-β-induced recruitment to Smad binding elements (SBE) within the promoters of TGF-β target genes has been firmly established. However, the elucidation of the molecular mechanisms involved in TGF-β-mediated transcriptional repression are only recently being uncovered. The proto-oncogene c-myc is repressed by TGF-β, and this repression is required for the manifestation of the TGF-β cytostatic program in specific cell types. We have shown that Smad3 is required for both TGF-β-induced repression of c-myc and subsequent growth arrest in keratinocytes. The transcriptional repression of c-myc is dependent on direct Smad3 binding to a novel Smad binding site, termed a repressive Smad binding element (RSBE), within the TGF-β inhibitory element (TIE) of the c-myc promoter. The c-myc TIE is a composite element, comprised of an overlapping RSBE and a consensus E2F site, that is capable of binding at least Smad3, Smad4, E2F-4, and p107. The RSBE is distinct from the previously defined SBE and may partially dictate, in conjunction with the promoter context of the overlapping E2F site, whether the Smad3-containing complex actively represses, as opposed to transactivates, the c-myc promoter.


2006 ◽  
Vol 26 (7) ◽  
pp. 2791-2802 ◽  
Author(s):  
Melissa Durant ◽  
B. Franklin Pugh

ABSTRACT Histone acetylation regulates gene expression, yet the functional contributions of the numerous histone acetyltransferases (HATs) to gene expression and their relationships with each other remain largely unexplored. The central role of the putative HAT-containing TAF1 subunit of TFIID in gene expression raises the fundamental question as to what extent, if any, TAF1 contributes to acetylation in vivo and to what extent it is redundant with other HATs. Our findings herein do not support the basic tenet that TAF1 is a major HAT in Saccharomyces cerevisiae, nor do we find that TAF1 is functionally redundant with other HATs, including Gcn5, Elp3, Hat1, Hpa2, Sas3, and Esa1, which is in contrast to previous conclusions regarding Gcn5. Our findings do reveal that of these HATs, only Gcn5 and Esa1 contribute substantially to gene expression genome wide. Interestingly, histone acetylation at promoter regions throughout the genome does not require TAF1 or RNA polymerase II, indicating that most acetylation is likely to precede transcription and not depend upon it. TAF1 function has been linked to Bdf1, which binds TFIID and acetylated histone H4 tails, but no linkage between TAF1 and the H4 HAT Esa1 has been established. Here, we present evidence for such a linkage through Bdf1.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 953-953 ◽  
Author(s):  
Linda Resar ◽  
Joelle Hillion ◽  
Katrina Alino ◽  
Michelle Rudek ◽  
Judith Karp

Abstract Acute leukemia in adults continues to be a formidable clinical challenge that demands further investigation to identify more rational therapies. To optimize anti-leukemia therapy, we are investigating the prototypical cyclin dependent kinase (cdk) inhibitor, flavopiridol, in refractory or poor-risk disease. Flavopiridol is a cytotoxic molecule that is thought to induce cell cycle arrest by blocking cyclin-dependent kinase (cdk) function, thereby interfering with RNA Polymerase II activity and globally down-regulating gene expression. In the setting of pan-cdk inhibition, E2F1 is released and appears to drive apoptosis in transformed cells. Consistent with these proposed mechanisms of action, a previous study from our group showed that flavopiridol induces apoptosis in vitro in leukemic blasts from patients with refractory leukemia. Administration of flavopiridol was associated with a decrease in one or more of the following proteins in the leukemic blasts: RNA Polymerase II, STAT3, cyclin D1, Bcl-2, and Mcl-1. Serum VEGF levels also decreased in most patients. We are now investigating mRNA levels of the genes encoding these proteins by quantitative, RT-PCR in leukemic blasts from adult patients with refractory or poor-risk leukemia before and after flavopiridol therapy. We have treated 26 patients with flavopiridol at an escalating, hybrid dose followed by ara-c and mitxantrone. Adequate RNA from leukemic blasts before and after flavopiridol administration was available from 8 of 11 patients studied thus far. All cases (8/8) exhibit a marked decrease in mRNA for VEGF following flavopiridol. mRNA levels for other putative flavopiridol target genes is also decreased in a subset of leukemic blast samples after therapy, as follows: E2F1 (6/8), STAT3 (6/8), Mcl-1 (6/8), RNA Polymerase subunit 2a (3/3), and cyclin D1 (2/3). In contrast, bcl-2 mRNA levels increased after flavopiridol in most cases (7/8), which could represent a compensatory mechanism of leukemic blasts to avoid apoptotic cell death. Our preliminary studies indicate that flavopiridol is cytotoxic in poor-risk and refractory acute leukemia. Studies are underway to determine if down-regulation of any putative target genes correlates with pharmacologic data or clinical responses.


2017 ◽  
Author(s):  
Anish Dattani ◽  
Damian Kao ◽  
Yuliana Mihaylova ◽  
Prasad Abnave ◽  
Samantha Hughes ◽  
...  

AbstractPlanarian flatworms have an indefinite capacity to regenerate missing or damaged body parts owing to a population of pluripotent adult stems cells called neoblasts (NBs). Currently, little is known about the importance of the epigenetic status of NBs and how histone modifications regulate homeostasis and cellular differentiation. We have developed an improved and optimized ChIP-seq protocol for NBs in Schmidtea mediterranea and have generated genome-wide profiles for the active marks H3K4me3 and H3K36me3, and suppressive marks H3K4me1 and H3K27me3. The genome-wide profiles of these marks were found to correlate well with NB gene expression profiles. We found that genes with little transcriptional activity in the NB compartment but which switch on in post-mitotic progeny during differentiation are bivalent, being marked by both H3K4me3 and H3K27me3 at promoter regions. In further support of this hypothesis bivalent genes also have a high level of paused RNA Polymerase II at the promoter-proximal region. Overall, this study confirms that epigenetic control is important for the maintenance of a NB transcriptional program and makes a case for bivalent promoters as a conserved feature of animal stem cells and not a vertebrate specific innovation. By establishing a robust ChIP-seq protocol and analysis methodology, we further promote planarians as a promising model system to investigate histone modification mediated regulation of stem cell function and differentiation.


2019 ◽  
Author(s):  
Nathalie Legrand ◽  
Clemens L. Bretscher ◽  
Svenja Zielke ◽  
Bernhard Wilke ◽  
Michael Daude ◽  
...  

AbstractRepression of transcription by nuclear receptors involves NCOR and SMRT corepressor complexes, which harbour the deacetylase HDAC3 as a subunit. Both deacetylase-dependent and -independent repression mechanisms have been reported for these complexes. In the absence of ligands, the nuclear receptor PPARβ/δ recruits NCOR and SMRT and represses expression of its canonical targets including the ANGPTL4 gene. Agonistic ligands cause corepressor dissociation and enable enhanced induction of transcription by coactivators. Vice versa, recently developed synthetic inverse agonists lead to augmented corepressor recruitment and repression that dominates over activating stimuli. Both basal repression of ANGPTL4 and reinforced repression elicited by inverse agonists are partially insensitive to HDAC inhibition. This raises the question of how PPARβ/δ represses transcription mechanistically.Here, we show that the PPARβ/δ inverse agonist PT-S264 impairs transcription initiation in human cells. Inverse agonist-bound PPARβ/δ interferes with recruitment of Mediator, RNA polymerase II, and TFIIB, but not with recruitment of other basal transcription factors, to the ANGPTL4 promoter. We identify NCOR as the main ligand-dependent interactor of PPARβ/δ in the presence of PT-S264. In PPARβ/δ knockout cells, reconstitution with PPARβ/δ mutants deficient in basal repression recruit less NCOR, SMRT, and HDAC3 to chromatin, concomitant with increased binding of RNA polymerase II. PT-S264 restores binding of NCOR, SMRT, and HDAC3, resulting in diminished polymerase II binding and transcriptional repression. In the presence of HDAC inhibitors, ligand-mediated repression of PPARβ/δ target genes is only partially relieved. Our findings corroborate deacetylase-dependent and -independent repressive functions of HDAC3-containing complexes. Deacetylase-independent repression mediated by binding of inverse agonists to PPARβ/δ involve NCOR/SMRT recruitment and interference with Mediator, TFIIB, and RNA polymerase II binding.


2020 ◽  
Vol 33 (10) ◽  
pp. 1242-1251
Author(s):  
Guangyuan Wang ◽  
Limin Song ◽  
Tingting Bai ◽  
Wenxing Liang

Histone acetyltransferase plays a critical role in transcriptional regulation by increasing accessibility of target genes to transcriptional activators. Botrytis cinerea is an important necrotrophic fungal pathogen with worldwide distribution and a very wide host range, but little is known of how the fungus regulates the transition from saprophytic growth to infectious growth. Here, the function of BcSas2, a histone acetyltransferase of B. cinerea, was investigated. Deletion of the BcSAS2 gene resulted in significantly reduced acetylation levels of histone H4, particularly of H4K16ac. The deletion mutant ΔBcSas2.1 was not only less pathogenic but also more sensitive to oxidative stress than the wild-type strain. RNA-Seq analysis revealed that a total of 13 B. cinerea genes associated with pathogenicity were down-regulated in the ΔBcSas2.1 mutant. Independent knockouts of two of these genes, BcXYGA (xyloglucanase) and BcCAT (catalase), led to dramatically decreased virulence and hypersensitivity to oxidative stress, respectively. Chromatin immunoprecipitation followed by quantitative PCR confirmed that BcSas2 bound directly to the promoter regions of both these pathogenicity-related genes. These observations indicated that BcSas2 regulated the transcription of pathogenicity-related genes by controlling the acetylation level of H4K16, thereby affecting the virulence and oxidative sensitivity of B. cinerea.


2000 ◽  
Vol 20 (7) ◽  
pp. 2358-2366 ◽  
Author(s):  
Christophe Badie ◽  
Jane E. Itzhaki ◽  
Matthew J. Sullivan ◽  
Adam J. Carpenter ◽  
Andrew C. G. Porter

ABSTRACT Entry into mitosis is controlled by the cyclin-dependent kinase CDK1 and can be delayed in response to DNA damage. In some systems, such G2/M arrest has been shown to reflect the stabilization of inhibitory phosphorylation sites on CDK1. In human cells, full G2 arrest appears to involve additional mechanisms. We describe here the prolonged (>6 day) downregulation of CDK1 protein and mRNA levels following DNA damage in human cells. This silencing of gene expression is observed in primary human fibroblasts and in two cell lines with functional p53 but not in HeLa cells, where p53 is inactive. Silencing is accompanied by the accumulation of cells in G2, when CDK1 expression is normally maximal. The response is impaired by mutations in cis-acting elements (CDE and CHR) in the CDK1 promoter, indicating that silencing occurs at the transcriptional level. These elements have previously been implicated in the repression of transcription during G1that is normally lifted as cells progress into S and G2. Interestingly, we find that other genes, including those for CDC25C, cyclin A2, cyclin B1, CENP-A, and topoisomerase IIα, that are normally expressed preferentially in G2 and whose promoter regions include putative CDE and CHR elements are also downregulated in response to DNA damage. These data, together with those of other groups, support the existence of a p53-dependent, DNA damage-activated pathway leading to CHR- and CDE-mediated transcriptional repression of various G2-specific genes. This pathway may be required for sustained periods of G2 arrest following DNA damage.


2020 ◽  
Author(s):  
Xiaoxue Jiang ◽  
Liyan wang ◽  
sijie xie ◽  
Yingjie Chen ◽  
Shuting Song ◽  
...  

Abstract Background: MEG3 is abnormally down-regulated in most tumors and inhibits tumorigenesis. Methods: Gene infection, Western blotting and tumorigenesis test in vitro and in vivo were performed to analyze the signaling pathway. Results: MEG3 increased the loading of P300 and RNA polymerase II onto the promoter regions of P53. Notably, MEG3 increased the methylation of histone H3 at lysine 27 through increasing the interplay between PRC2 and histone H3. Furthermore, MEG3 inhibited the expression of TERT by increasing the H3K27me3 and decreasing the loading of RNA pol Ⅱ in TERT promoter regions. Moreover, MEG3 inhibit the activity of telomerase by reducing the binding of TERT to TERC competitively. In addition, MEG3 also increased the TERRA through reducing DNA methyltransferase DNMT3b binding to the promoter regions of TERRA competitively. Therefore, the interaction between TERC and TERT was competitively attenuated by increasing the interaction between TERRA and TERT, which inhibited the activity of telomerase in hLCSCs.In particular, MEG3 shortened the length of telomere by blocking the formation of complex maintaining telomere length(POT1-Exo1-TRF2-SNM1B) and decreasing the binding of the complex to telomere competitively, which was caused by increasing the interplay between P53 and HULC in hLCSCs.Strikingly, MEG3 inhibited the growth in vitro and in vivo of hLCSCs by reducing the activity of telomerase and attenuating telomeric repeat binding factor 2(TRF2). Conclusions: our results demonstrated MEG3 inhibits the occurrence of human liver cancer and these findings provide an important insight into the prevention and treatment of human liver cancer.


Sign in / Sign up

Export Citation Format

Share Document