Polylactic acid functionalization with maleic anhydride and its use as coupling agent in natural fiber biocomposites: a review

2018 ◽  
Vol 25 (5-7) ◽  
pp. 515-538 ◽  
Author(s):  
M. E. González-López ◽  
J. R. Robledo-Ortíz ◽  
R. Manríquez-González ◽  
J. A. Silva-Guzmán ◽  
A. A. Pérez-Fonseca
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Usman Saeed ◽  
Sami Ullah Rathur ◽  
Hamad AlTuraif ◽  
Hisham Bamufleh

The nanocellulose fibril produced by using natural sources can be used in developing sustainable and green products. The useful features of nanocellulose fibril can include valuable physical properties, appropriate surface chemistry, low toxicity, and biocompatibility. The study presented shows the use of polylactic acid with five different percentages of nanocellulose fibril and the use of 3% maleic anhydride as a coupling agent. The maleic anhydride acts as coupling agent which improves the thermochemical and thermomechanical characteristics of the end product. The addition of 3% maleic anhydride as coupling agent with 10% nanocellulose fibril improved the impact strength up to 14.3%, elastic modulus up to 40.6%, and tensile strength up to 30.1%. Furthermore, the dynamic mechanical analysis result indicates that the inclusion of maleic anhydride improved the toughness by reducing the tan δ peak and increases the storage modulus. Finally, the scanning electron micrograph shows that the interfacial compatibility between nanocellulose fibril and polylactic acid matrix is improved with the addition of maleic anhydride.


2021 ◽  
pp. 096739112110041
Author(s):  
Shakti Chauhan ◽  
N Raghu ◽  
Anand Raj

Polylactic acid (PLA) is blended with native starch or thermo plasticized starch (TPS) for preparing biodegradable composites. However, poor compatibility of PLA with starch results in the composites with inferior mechanical properties. This study examines the effect of Maleic Anhydride-Grafted-PLA (GMAPLA) coupling agent and its concentration on the extent of improvements in mechanical and thermal properties of PLA –TPS blends. Maleic anhydride was grafted on PLA in Haake torque rheometer, characterized and used as the coupling agent. PLA/TPS (wt/wt) blends (70/30 and 50/50) were prepared by twin screw extrusion. GMAPLA at three different levels 5%, 10% and 15% (wt%) with respect to PLA content was taken to study its effect on mechanical properties of blends. Presence of GMAPLA significantly improved the mechanical properties (tensile, flexural and impact strength) of TPS/PLA blends. Among the three concentrations, 10% GMAPLA in the blend was found to give the maximum improvement in strength properties. Dynamic mechanical analysis and thermo-gravimetric analysis indicated no significant effect of GMAPLA content on transition temperatures and thermal degradation behavior of the blends.


2018 ◽  
Vol 919 ◽  
pp. 167-174 ◽  
Author(s):  
Jan Prusek ◽  
Martin Boruvka ◽  
Petr Lenfeld

This paper deals with natural degradation of PLA (polylactic acid) composites with natural fiber reinforcement in non-simulated conditions. Composite material was made of PLA and 6 different types of biodegradable fibers. Fibers made from pulp, wool, bamboo, soya, flax and hemp. All samples had 20% volume of fibers. Three of each composite sample were placed in compost (aerobic surrounding) for 72 weeks. All samples were examined at the beginning every 2 weeks to observe if the degradation process occurred and all samples were examined at the end of 72 weeks period to observe results of degradation of each composite material.


2021 ◽  
Vol 889 ◽  
pp. 44-49
Author(s):  
Yeng Fong Shih ◽  
Zheng Ting Chen ◽  
Wei Lun Lin ◽  
Po Chun Chiu ◽  
Chin Hsien Chiang ◽  
...  

The purpose of this research is to develop a new type of environmentally friendly container which has thermostatic effect and is biodegradable. This study is based on polylactic acid (PLA) and maleic anhydride grafted polybutylene succinate (MAPBS). Subsequently, the diatomite which adsorbed polyethylene glycol (PEG) was added to prepare a thermostatic biodegradable composite. The addition of MAPBS is to improve the compatibility between PLA and diatomite. In addition, the thermostatic effect, tensile strength, thermal deformation temperature and impact strength of the composite were investigated.


2021 ◽  
Vol 889 ◽  
pp. 21-26
Author(s):  
Yeng Fong Shih ◽  
Jia Yi Xu ◽  
Nian Yi Wu ◽  
Yu Ting Chiu ◽  
Hui Ming Yu ◽  
...  

Bitter tea oil meal (BTOM) is the main waste from the production of bitter tea oil which is squeezed from bitter tea seeds. The purpose of this study is to reuse the BTOM as an additive of the polylactic acid (PLA) to prepare eco-friendly composites. The effects of the addition of BTOM and maleic anhydride grafted polybutylene succinate (MAPBS) on the properties of PLA were investigated. The addition of MAPBS is mainly to increase the toughness of the PLA, and to increase the compatibility between BTOM and PLA. The experimental results show that the compatibility of PLA and BTOM and impact resistance of the composites can be improved by addition of MAPBS. The composite with 5% BTOM and 8% MAPBS exhibited the best tensile strength. In addition, the composite with 5% BTOM and 5% MAPBS has the best impact strength. It was found that the addition of BTOM and MAPBS can promote the crystallization of PLA. Moreover, the addition of BTOM not only can reduce the usage of PLA and the cost of the materials, but also reuse and reduce the waste from food industry.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 349 ◽  
Author(s):  
Ji-Won Park ◽  
Jae-Ho Shin ◽  
Gyu-Seong Shim ◽  
Kyeng-Bo Sim ◽  
Seong-Wook Jang ◽  
...  

In recent years, there has been an increasing need for materials that are environmentally friendly and have functional properties. Polylactic acid (PLA) is a biomass-based polymer, which has attracted research attention as an eco-friendly material. Various studies have been conducted on functionality imparting and performance improvement to extend the field of application of PLA. Particularly, research on natural fiber-reinforced composites have been conducted to simultaneously improve their environmental friendliness and mechanical strength. Research interest in hybrid composites using two or more fillers to realize multiple functions are also increasing. Phase change materials (PCMs) absorb and emit energy through phase transition and can be used as a micro encapsulated structure. In this study, we fabricated hybrid composites using microcapsulated PCM (MPCM) and the natural fibrous filler, kenaf. We aimed to fabricate a composite material with improved endothermic characteristics, mechanical performance, and environmental friendliness. We analyzed the endothermic properties of MPCM and the structural characteristics of two fillers and finally produced an eco-friendly composite material. The PCM and kenaf contents were varied to observe changes in the performance of the hybrid composites. The endothermic properties were determined through differential scanning calorimetry, whereas changes in the physical properties of the hybrid composite were determined by measuring the mechanical properties.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1660
Author(s):  
Young-Rok Seo ◽  
Sang-U Bae ◽  
Jaegyoung Gwon ◽  
Qinglin Wu ◽  
Birm-June Kim

Polylactic acid (PLA)/polybutylene succinate (PBS)/wood flour (WF) biocomposites were fabricated by in situ reactive extrusion with coupling agents. Methylenediphenyl 4,4’-diisocyanate (MDI) and maleic anhydride (MA) were used as coupling agents. To evaluate the effects of MDI and MA, various properties (i.e., interfacial adhesion, mechanical, thermal, and viscoelastic properties) were investigated. PLA/PBS/WF biocomposites without coupling agents revealed poor interfacial adhesion leading to deteriorated properties. However, the incorporation of MDI and/or MA into biocomposites showed high performances by increasing interfacial adhesion. For instance, the incorporation of MDI resulted in improved tensile, flexural, and impact strengths and an increase in tensile and flexural modulus was observed by the incorporation of MA. Specially, remarkably improved thermal stability was found in the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA. Also, the addition of MDI or MA into biocomposites increased the glass transition temperature and crystallinity, respectively. For viscoelastic property, the PLA/PBS/WF biocomposites with 1 phr MDI and 1 phr MA achieved significant enhancement in storage modulus compared to biocomposites without coupling agents. Therefore, the most balanced performances were evident in the PLA/PBS/WF biocomposites with the hybrid incorporation of small quantities of MDI and MA.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 929 ◽  
Author(s):  
Lety del Pilar Fajardo Cabrera de Lima ◽  
Ruth Marlene Campomanes Santana ◽  
Cristian David Chamorro Rodríguez

Researches on thermoplastic composites using natural fiber as reinforcement are increasing, but studies of durability over time are scarce. In this sense the objective of this study is to evaluate changes in the properties of polypropylene/bamboo fiber (PP/BF) composite and the influence of the use of coupling agent (CA) in these composites after natural ageing. The PP/BF (70/30 wt) composites and 3% wt CA (citric acid from natural origin and maleic anhydride grafted polypropylene from petrochemical origin) were prepared by using an internal mixer chamber and then injection-molded. The samples were exposed to natural weathering for a total period of 12 months and characterized before and after exposure. All exposed composites experienced a decrease in their properties, however, the use of CA promoted more stability; in mechanical properties, the composites with CA showed lower loss about 23% in Young′s modulus, 18% in tensile stress at break, and 6% in impact strength. This behavior was similar in thermal and physical properties, the result for the CA of natural origin being similar to that of synthetic origin. These results indicate that the use of a CA may promote higher interaction between the fiber and the polymer. In addition, the CAs of organic origin and synthetic origin exhibited similar responses to natural ageing.


Sign in / Sign up

Export Citation Format

Share Document