scholarly journals Inhibitory effect of Astragalus Membranaceus on osteoporosis in SAMP6 mice by regulating vitaminD/FGF23/Klotho signaling pathway

Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 4464-4474
Author(s):  
Yihui Chai ◽  
Xiang Pu ◽  
Yongzhen Wu ◽  
Xingzhong Tian ◽  
Qian Li ◽  
...  
Author(s):  
Md. Junaid ◽  
Yeasmin Akter ◽  
Syeda Samira Afrose ◽  
Mousumi Tania ◽  
Md. Asaduzzaman Khan

Background: AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to the carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. Objective: In this review article, we have interpreted the role of AKT signaling pathways in cancer and natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanism. Method: We have collected the updated information and data on AKT, their role in cancer and inhibitory effect of TQ in AKT signaling pathway from google scholar, PubMed, Web of Science, Elsevier, Scopus and many more. Results: There are many drugs already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. Conclusion: This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ’s future as a cancer therapeutic drug.


2021 ◽  
Vol 38 (2) ◽  
Author(s):  
Wenqian Zheng ◽  
Jinhui Hu ◽  
Yiming Lv ◽  
Bingjun Bai ◽  
Lina Shan ◽  
...  

AbstractThe use of the anthelmintic drug pyrvinium pamoate (PP) in cancer therapy has been extensively investigated in the last decade. PP has been shown to have an inhibitory effect in colorectal cancer (CRC), but the underlying mechanism remains elusive. We aimed to investigate the antitumor activity and mechanisms of PP in CRC. In the present study, we used CCK-8 assays, colony formation assays, and western blotting to reveal that PP effectively suppressed CRC cell proliferation and the AKT-dependent signaling pathway in a concentration-dependent and time-dependent manner. Flow cytometric analysis and fluorescence microscopy demonstrated that PP increased intracellular reactive oxygen species (ROS) accumulation. We found that the inhibitory effect of PP on cell proliferation and AKT protein expression induced by PP could be partially reversed by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, the results also demonstrated that PP inhibited cell migration by modulating epithelial-to-mesenchymal transition (EMT)-related proteins, including E-cadherin and vimentin. In conclusion, our data suggested that PP effectively inhibited cell proliferation through the ROS-mediated AKT-dependent signaling pathway in CRC, further providing evidence for the use of PP as an antitumor agent.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Xuemei Shen ◽  
Jia Tang ◽  
Rui Jiang ◽  
Xiaogang Wang ◽  
Zhaoxin Yang ◽  
...  

AbstractMany novel non-coding RNAs, such as microRNAs (miRNAs) and circular RNAs (circRNAs), are involved in various physiological and pathological processes. The PI3K/AKT signaling pathway is important for its role in regulating skeletal muscle development. In this study, molecular and biochemical assays were used to confirm the role of miRNA-145 (miR-145) in myoblast proliferation and apoptosis. Based on sequencing data and bioinformatics analysis, we identified a new circRILPL1, which acts as a sponge for miR-145. The interactions between circRILPL1 and miR-145 were examined by bioinformatics, a luciferase assay, and RNA immunoprecipitation. Mechanistically, knockdown or exogenous expression of circRILPL1 in the primary myoblasts was performed to prove the functional significance of circRILPL1. We investigated the inhibitory effect of miR-145 on myoblast proliferation by targeting IGF1R to regulate the PI3K/AKT signaling pathway. A novel circRILPL1 was identified that could sponge miR-145 and is related to AKT activation. In addition, circRILPL1 was positively correlated with muscle proliferation and differentiation in vitro and could inhibit cell apoptosis. The newly identified circRILPL1 functions as a miR-145 sponge to regulate the IGF1R gene and rescue the inhibitory effect of miR-145 on the PI3K/AKT signaling pathway, thereby promoting myoblast growth.


2021 ◽  
Vol 22 (11) ◽  
pp. 5920
Author(s):  
Hyun Hwangbo ◽  
Seon Yeong Ji ◽  
Min Yeong Kim ◽  
So Young Kim ◽  
Hyesook Lee ◽  
...  

Chronic inflammation, which is promoted by the production and secretion of inflammatory mediators and cytokines in activated macrophages, is responsible for the development of many diseases. Auranofin is a Food and Drug Administration-approved gold-based compound for the treatment of rheumatoid arthritis, and evidence suggests that auranofin could be a potential therapeutic agent for inflammation. In this study, to demonstrate the inhibitory effect of auranofin on chronic inflammation, a saturated fatty acid, palmitic acid (PA), and a low concentration of lipopolysaccharide (LPS) were used to activate RAW264.7 macrophages. The results show that PA amplified LPS signals to produce nitric oxide (NO) and various cytokines. However, auranofin significantly inhibited the levels of NO, monocyte chemoattractant protein-1, and pro-inflammatory cytokines, such as interleukin (IL)-1β, tumor necrosis factor-α, and IL-6, which had been increased by co-treatment with PA and LPS. Moreover, the expression of inducible NO synthase, IL-1β, and IL-6 mRNA and protein levels increased by PA and LPS were reduced by auranofin. In particular, the upregulation of NADPH oxidase (NOX) 4 and the translocation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) induced by PA and LPS were suppressed by auranofin. The binding between the toll-like receptor (TLR) 4 and auranofin was also predicted, and the release of NO and cytokines was reduced more by simultaneous treatment with auranofin and TLR4 inhibitor than by auranofin alone. In conclusion, all these findings suggested that auranofin had anti-inflammatory effects in PA and LPS-induced macrophages by interacting with TLR4 and downregulating the NOX4-mediated NF-κB signaling pathway.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Yang Yang ◽  
Xiao-Wei Peng

As one of the most common primary intraocular carcinomas, retinoblastoma generally stems from the inactivation of the retinoblastoma RB1 gene in retinal cells. Antisense non-coding RNA in the INK4 locus (ANRIL), a long non-coding RNA (lncRNA), has been reported to affect tumorigenesis and progression of various cancers, including gastric cancer and non-small cell lung cancer. However, limited investigations emphasized the role of ANRIL in human retinoblastoma. Hence, the current study was intended to investigate the effects of ANRIL on the proliferation, apoptosis, and invasion of retinoblastoma HXO-RB44 and Y79 cells. The lentivirus-based packaging system was designed to aid the up-regulation of ANRIL and ATM expressions or employed for the down-regulation of ANRIL in human retinoblastoma cells. Afterward, ANRIL expression, mRNA and protein expression of ATM and E2F1, and protein expression of INK4b, INK4a, alternate reading frame (ARF), p53 and retinoblastoma protein (pRB) were determined in order to elucidate the regulation effect associated with ANRIL on the ATM-E2F1 signaling pathway. In addition, cell viability, apoptosis, and invasion were detected accordingly. The results indicated that the down-regulation of ANRIL or up-regulation of ATM led to an increase in the expressions of ATM, E2F1, INK4b, INK4a, ARF, p53, and pRB. The silencing of ANRIL or up-regulation of ATM exerted an inhibitory effect on the proliferation and invasion while improving the apoptosis of HXO-RB44 and Y79 cells. In conclusion, the key observations of our study demonstrated that ANRIL depletion could act to suppress retinoblastoma progression by activating the ATM-E2F1 signaling pathway. These results provide a potentially promising basis for the targetted intervention treatment of human retinoblastoma.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Li ◽  
Dapeng Wu ◽  
Pei Wang ◽  
Xiaohui Li ◽  
Gongning Shi

miR-195 is related to tumorigenesis and frequently inhibits cell proliferation and promotes apoptosis in various cancers, including esophageal carcinoma (EC). The mTOR/p70s6k signaling pathway, which is the major target pathway for HMGA2, regulates the survival and cell proliferation of many tumors and is commonly active in EC. The relationships of miR-195, HMGA2, and the mTOR/p70s6k signaling pathway in EC, however, remain unknown. In the present study, we found that the miR-195 level was significantly downregulated in EC tissues, while the mRNA expressions of HMGA2 were significantly upregulated. Dual-luciferase reporter assay demonstrated that HMGA2 is a target of miR-195. MTT assay and flow cytometry revealed that miR-195 overexpression inhibited cell proliferation and induced apoptosis by targeting HMGA2. We also found that HMGA2 restored the inhibitory effect of miR-195 on phosphorylation of mTOR and p70S6K. Furthermore, rapamycin, a specific inhibitor of the mTOR/p70S6K signaling pathway, decreased the levels of Ki-67 and Bcl-2/Bax ratio, inhibited cell proliferation, and promoted apoptosis in EC cells. In conclusion, upregulation of miR-195 significantly suppressed cell growth and induced apoptosis of EC cells via suppressing the mTOR/p70s6k signaling pathway by targeting HMGA2.


2018 ◽  
Vol 96 (5) ◽  
pp. 521-526 ◽  
Author(s):  
Youming Ding ◽  
Xiaoyan Chen ◽  
Bin Wang ◽  
Bin Yu ◽  
Jianhui Ge ◽  
...  

The proteasomal system is a promising target for cancer treatment. Quercetin (Que), a flavonoid compound with antitumor ability, displays the inhibitory effect on proteasome activity. However, the underlying molecular mechanisms are ill defined. The present study found that Que treatment significantly reduced the chymotrypsin-like protease activity of proteasome whereas the trypsin- and caspase-like protease activities remained unchanged in HepG2 cancer cells, along with activation of p38 MAPK and JNK and reduction of ERK1/2 phosphorylation. Que-reduced proteasome activity could not be reverted by inhibition of p38 MAPK and JNK signaling pathway. In addition, MEK1 overexpression or knockdown upregulated or downregulated the chymotrypsin-like protease activity of proteasome, respectively. Both Que and MEK1/ERK1/2 inhibitor attenuated the expression levels of proteasome β subunits. These results indicate that Que-induced suppression of MEK1/ERK1/2 signaling and subsequent reduction of proteasome β subunits is responsible for its inhibitory impacts on proteasome activity.


2021 ◽  
Vol 11 (2) ◽  
pp. 290-294
Author(s):  
Lei Yuan ◽  
Ting Zhang ◽  
Hong Pan ◽  
Fei Wang

Background: The paper explored the inhibitory effect of Shikonin on Notch2 signaling pathway of U87 cells and elucidated the mechanism. Material and methods: CCK-8 was used to determine the viability of U87 cells. The Kit was used to detect the levels of ROS and GSH in the cells. After Annexin V-FITC/PI staining, flow cytometry was used to detect the effect of Shikonin on U87 cell apoptosis. Western Blotting was used to detect the expressions of Notch2, Notch3, Hes1 and Hey1. The levels of NH4Cl and MG132 were determined to measure the effect of Shikonin inhibiting Notch2 protein level in U87 cells, and the effect of Shikonin on Itch inhibiting Notch2 protein level. Results: Shikonin can inhibit the expressions of Notch2 and Notch3 proteins and the levels of downstream signaling molecules Hes1 and Hey1 in U87 cells, and in a concentration- and time dependent manner. Shikonin can promote the degradation of Notch2 via the lysosomal pathway, which is associated with the up-regulation of the Itch expression. The inhibition of Notch2 and cell viability is related to the levels of GSH and ROS in cells, and Shikonin can down-regulate Notch2 to inhibit the proliferation of U87 cells. Conclusion: Shikonin inhibits the malignancy of glioma cells by promoting the degradation of Notch2 through the lysosomal pathway, which is related to the antioxidant effect. The results of our experiments provided certain experimental and theoretical basis for Shikonin treating glioma.


Sign in / Sign up

Export Citation Format

Share Document