scholarly journals A Broadband High-speed Programmable Multi-modulus Divider Based on CMOS Process

2021 ◽  
Vol 2132 (1) ◽  
pp. 012046
Author(s):  
Muzhen Hao ◽  
Xiaodong Liu ◽  
Zhizhe Liu ◽  
Feng Ji ◽  
Di Sun ◽  
...  

Abstract This paper introduces a design of a high-speed programmable multi-modulus divider (MMD) based on 65nm CMOS process. The design adopts the cascade structure of 7 level 2/3 frequency dividers, and expands the frequency division range by adjusting the number of cascade stages, so as to achieve a continuous frequency division ratio of 16 to 255. Among them, the first level 2/3 frequency divider adopts the D flip-flop design of CML (current mode logic) structure, the second level 2/3 frequency divider adopts the D flip-flop design of E-TSPC (extended true-single-phase-clock) structure. The whole circuit realizes the working frequency range of 13∼18GHz high frequency and large bandwidth. This design has completed layout drawing and parasitic parameter extraction simulation. The simulation results show that the operating frequency range of the circuit can reach 13∼18GHz. When the input signal is 18GHz and the frequency division ratio is 255, the phase noise is about -135dBc/Hz@1kHz. It has the advantages of high frequency, large bandwidth, and low phase noise.

MRS Advances ◽  
2019 ◽  
Vol 4 (48) ◽  
pp. 2577-2584
Author(s):  
James N. Pan

ABSTRACTThis paper reports a novel low power, fast nonvolatile memory utilizing high frequency phonons, atomic force dual quantum wells, ferromagnetism, coupled magnetic dipoles and random accessed magnetic devices. Very high-speed memories, such as SRAM and DRAM, are mostly volatile (data are lost when power is off). Nonvolatile memories, including FLASH and MRAM, are typically not as fast has DRAM or SRAM, and the voltages for WRITE/ERASE operations are relatively high. This paper describes a silicon nonvolatile memory that is compatible with advanced sub-7nm CMOS process. It consists of only one transistor (MOSFET) – small size, and more cost effective, compared with a 6-Transistor SRAM. There is no need to refresh, as required by DRAM. The access time can be less than 1ns – close to the speed level of relaxation time - much faster than traditional FLASH memories and comparable to volatile DRAM. The operating voltages for all memory functions can be as low as high speed CMOS.


2015 ◽  
Vol 24 (07) ◽  
pp. 1550100
Author(s):  
Rui Ma ◽  
Zhangming Zhu ◽  
Maliang Liu ◽  
Ping Gan ◽  
Yintang Yang

In this paper, a novel accurate analog-based 50% duty cycle corrector (DCC) for high-speed and high-resolution operations is presented. Due to the performance limitations of conventional DCCs, such as a confined locking range and overtone locking, a novel delay line using forward-body-bias technique and reset circuit are adopted to enlarge the locking range of the proposed DCC. Simulated results based on the standard 0.18 μm 1.8 V standard CMOS process show that output duty cycle error is less than ±1% over an input frequency range of 50–800 MHz. The peak-to-peak jitter at 800 MHz is 789.77 fs with a power consumption of 11.09 mW. The active layout area of the proposed DCC is 0.21 × 0.21 mm2.


2018 ◽  
Vol 17 ◽  
pp. 01007
Author(s):  
Yilong Liao ◽  
Xiangning Fan

A low-voltage programmable frequency divider with wide input frequency range is fabricated in standard 0.18µm TSMC RF CMOS technology and presented in this paper. Considering the frequency division ratio of dual-modulus prescaler is relatively smaller, a programmable divider with full custom design is used to increase the frequency division ratio and the maximum operating frequency. The frequency division ratio of the programmable frequency divider covers from 64 to 255. And the measured results show that the programmable divider works correctly when the input frequency varies from 0.5 GHz to 6.0 GHz, with 1V supply. Besides, the power consumption is 3.5 mA at the maximum frequency of 6.0 GHz.


2016 ◽  
Vol 25 (10) ◽  
pp. 1630006
Author(s):  
Sungkyung Park ◽  
Chester Sungchung Park

Frequency dividers are used in frequency synthesizers to generate specific frequencies or clock (CK) waveforms. As consequences of their operating principles, frequency dividers often produce output waveforms that exhibit duty cycles other than 50%. However, some circuits and systems, including dynamic memory systems and data converters, which accommodate frequency divider outputs, may need symmetric or 50%-duty-cycle clock waveforms to optimize timing margins or to obtain sufficient timing reliability. In this review paper, design principles and methods are studied to produce symmetric waveforms for the in-phase (I) and quadrature (Q) outputs of high-speed CMOS frequency dividers with design considerations from the logic gate level down to the transistor level in terms of speed, reliability, noise, and latency. A compact and robust multi-gigahertz frequency divider with moduli 12, 14, and 16 to provide I and Q outputs with 50% duty cycle is proposed and designed using a 90-nm digital CMOS process technology with 1.2-V supply.


2021 ◽  
Vol 16 (4) ◽  
pp. 528-533
Author(s):  
Xianghong Zhao ◽  
Longhua Ma ◽  
Hongye Su ◽  
Jieyu Zhao ◽  
Weiming Cai

In this paper, a simple-structured and high-performance current-mode logic (CML) ternary D flip-flop based on BiCMOS is proposed. It combines both advantages of BiCMOS and CML circuits, which is with much more high-speed, strong-drive and anti-interference abilities. Utilizing TSMC 180 nm process, results of simulations carried out by HSPICE illustrate the proposed circuit not only has correct logic function, but also gains improvements of 95.6~98.4% in average D-Q delay and 16.2%~70.4 in PDP compared with advanced ternary D flip-flop. When compared at the same information transmission speed, proposed circuit is more competitive. Furthermore, it can perform up to high frequency of 15 GHz and drive heavier load. All the results prove that proposed circuit is high-performance and very suitable for high-speed and high-frequency applications.


2014 ◽  
Vol 13 (02) ◽  
pp. 1450009
Author(s):  
Sheng-Lyang Jang ◽  
Tsung-Chao Fu

The effect of ac hot-carrier stress on the performance of a wide locking range divide-by-4 injection-locked frequency divider (ILFD) is investigated. The ILFD was implemented in the TSMC 0.18 μm 1P6M CMOS process. The ILFD uses direct injection MOSFETs for coupling external signal to the resonators. Radio frequency (RF) circuit parameters such as oscillation frequency, tuning range, phase noise, and locking range before and after RF stress at an elevated supply voltage for 5 h have been examined by experiment. The measured locking range, operation range and phase noise after RF stress shows significant degradation from the fresh circuit condition.


2013 ◽  
Vol 441 ◽  
pp. 125-128
Author(s):  
Li Fan Wu

A clock-inverter feed-forward toggle flip-flop (CIFF-TFF) based ultra-high-speed 2:1 dynamic frequency divider is designed in a GaAs heterojunction bipolar transistor (HBT) technology with fT of 60 GHz from Win Semiconductors corporation. The co-simulation methodology of electromagnetic field and schematic diagram is utilized in the design. Through tuning the currents in the core and the other parts of the divider separately, the dynamic frequency divider approaches an operating speed of 36 GHz with a power consumption of 162 mW in the core part from a single 6 V supply. The design is currently taped out.


Sign in / Sign up

Export Citation Format

Share Document