Therapeutic Effects of Teucrium polium Extract on Oxidative Stress in Pancreas of Streptozotocin-Induced Diabetic Rats

2008 ◽  
Vol 11 (3) ◽  
pp. 525-532 ◽  
Author(s):  
A. Ardestani ◽  
R. Yazdanparast ◽  
Sh. Jamshidi
2015 ◽  
Vol 62 (2) ◽  
pp. 13-19
Author(s):  
Urmila Jarouliya ◽  
Anish Zacharia ◽  
Raj K. Keservani ◽  
Godavarthi B.K.S Prasad

Abstract Diabetes mellitus is a metabolic disorder characterised by hyperglycemia and oxidative stress. The aim of the present study is to explore the antioxidant effect of Spirulina maxima in rat model along with the histopathological observations. Diabetes was induced by feeding 10% fructose solution orally to Wistar rats (n = 6) for 30 days, analysed for plasma blood glucose and the markers of the oxidative stress [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS)]. These biochemical studies were associated with histopathological examination of liver and kidney sections. The microalga Spirulina maxima being rich in proteins and other essential nutrients is widely used as a food supplement. S. maxima at a dose of 5 and 10% per kg and the metformin (500 mg/kg) as reference drug were given orally for 30 days to the diabetic rats. Diabetic rats showed significant (p < 0.001) elevations in plasma blood glucose, thiobarbituric acid-reactive substances and significant reduction in catalase, superoxide dismutase and reduced glutathione activity. Oral administration of 5 and 10% aqueous extract of S. maxima for 30 days restored not only of blood glucose levels but also markers of oxidative stress. Histopathological observations of tissues manifested that the S. maxima administration had the protective and therapeutic effects against fructose-induced abnormalities in diabetic rats. It is concluded that S. maxima is effective in reinstating the antioxidant activity in addition to its antidiabetic effect in type 2 diabetic rats.


2021 ◽  
Author(s):  
Ze-Peng XU ◽  
Ni TIAN ◽  
Song-Tiao LI ◽  
Kun-Meng LI ◽  
Xiao-Yu WANG ◽  
...  

Abstract Objective: To investigate the therapeutic effect of human umbilical cord mesenchymal stem cells (hUCMSCs) on diabetic retinopathy (DR) in diabetic rats, and to study the mechanism of hUCMSCs in treating diabetic retinopathy by tert-butylhydroquinone (tBHQ) regulation of the Nrf2/HO-1 pathway.Methods: The diabetic rat model was induced by intraperitoneal injection of streptozotocin (STZ). The experimental animals were divided into six groups: Normal, diabetes mellitus (DM), hUCMSCs, tBHQ, combined tBHQ-hUCMSCs, and all-trans-retinoid acid (ATRA)-hUCMSCs combined group. Visual function experiments and histological analyses were performed eight weeks post intravitreal injection. Biochemical and molecular analyses were used to assess the hUCMSCs composition and its biological effects.Results: Improvements in systemic oxidative stress and inflammation were found in the tBHQ group. Although hUCMSCs had no significant effect on oxidative stress, retinal structure was improved, visual defects reduced and expression of local retinal inflammatory factors were inhibited following its application. The effect of combined therapy was better than that of single therapy. Inhibition of the Nrf2/HO-1 pathway can promote the expression of systemic inflammatory factors and inhibit the therapeutic effect of hUCMSCs in the retina.Conclusions: Intravitreal administration of hUCMSCs triggers an effective cytoprotective microenvironment in the retina of diabetic mice. Alone, however, it may not significantly improve the systemic inflammatory response of diabetes. In combination with tBHQ it may promote Nrf2expression, systemic antioxidant stress and therapeutic effects of hUCMSCs.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Mousa O. Germoush ◽  
Hassan A. Elgebaly ◽  
Sherif Hassan ◽  
Emadeldin M. Kamel ◽  
May Bin-Jumah ◽  
...  

Seaweeds are rich in structurally diverse bioactive compounds with promising therapeutic effects. This study aimed to isolate and identify terpenes from the brown alga Padina pavonia and to investigate its antidiabetic activity, pointing to the possible involvement of peroxisome proliferator-activated receptor (PPAR)γ. Type 2 diabetes was induced by feeding rats a high fat diet (HFD) for 4 weeks followed by injection of 35 mg/kg streptozotocin (STZ). The diabetic rats received P. pavonia extract (PPE; 50, 100 and 200 mg/kg) for 4 weeks and samples were collected for analyses. HFD/STZ-induced rats showed hyperglycemia, dyslipidemia, impaired glucose tolerance, decreased insulin, and increased HbA1c and HOMA-IR. PPE ameliorated hyperglycemia and dyslipidemia, and improved glucose tolerance and insulin sensitivity in diabetic rats. Treatment with PPE increased hepatic hexokinase activity and glycogen, suppressed glucose-6-phosphatase, fructose-1,6-biphosphatase, and glycogen phosphorylase, and attenuated oxidative stress, inflammation, and liver injury and lipid infiltration in HFD/STZ-induced rats. In addition, PPE boosted antioxidants and upregulated PPARγ gene and protein expression in the liver of diabetic rats. Phytochemical investigation resulted in the isolation of six terpenes from PPE and in silico analysis revealed their binding affinity toward PPARγ. In conclusion, P. pavonia-derived terpenes attenuated hyperglycemia, dyslipidemia, oxidative stress, and inflammation, and improved insulin sensitivity and carbohydrate metabolism in type 2 diabetic rats. These beneficial effects are mediated via PPARγ activation. However, further studies to explore the exact mechanisms underlying the antidiabetic effect of PPE are recommended.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Daklallah A. Almalki ◽  
Sameera A. Alghamdi ◽  
Atef M. Al-Attar

Medicinal plants have played an important role in the treatment of many diseases. Medicinal plants are believed to be well appropriate with the human body and to produce less side influences than the pharmaceuticals. Kingdom of Saudi Arabia has abundant and wide variety of medicinal plants whose therapeutic effects have not been adequately studied. The aim of this study was to investigate the hypoglycemic activities of the extracts of three plant species collected from Albaha region of Saudi Arabia including Olea oleaster (Oleaceae family) leaves (OLE), Juniperus procera (Cupressaceae family) leaves (JLE), and Opuntia ficus-indica (Cactaceae family) stems (OSE) on streptozotocin (STZ) diabetic male rats. The animals were distributed into eight groups. The first group was used as normal control. The second group was diabetic control. Diabetic rats of the third, fourth, and fifth groups were supplemented with OLE, JLE, and OSE, respectively. Normal rats of the sixth, seventh, and eighth groups were treated with OLE, JLE, and OSE, respectively. As expected, the mean of body weight was significantly decreased in rats of the second group. Significant increase in the value of serum glucose and decline of insulin value were observed in rats of the second group. Several alterations of lipid and protein profile and oxidative stress markers were noted in diabetic control rats. Severe histopathological alterations of pancreatic tissues were observed in untreated diabetic rats. The obtained results showed that OLE, JLE, and OSE attenuated the physiological and histopathological alterations. These new data indicate that the attenuation influences of OLE, JLE, and OSE attributed to their antioxidant properties confirmed by oxidative stress markers evaluation.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Mohammad Morshedi ◽  
Maryam Saghafi-Asl ◽  
Elaheh-Sadat Hosseinifard

Abstract Background The manipulation of gut microbiota as a target has been suggested to reduce the risks for a number of diseases such as type 2 diabetes mellitus (T2DM). Conversely, T2DM is associated with complications such as gut and brain disorders. Furthermore, the impact of probiotics and prebiotics to improve T2DM complications are reported. Thus, the present study seeks to investigate the therapeutic and neuropsychological effects of L. plantarum and inulin in diabetic rats. Methods Throughout the investigation, L. plantarum, inulin or their combination (synbiotic) was administered to diabetic rats. in the end, fecal samples were collected to evaluate the gut microbial composition. Then behavioral tests were conducted. Subsequently, the obtainment of the prefrontal cortex (PFC) and hippocampal samples. Results Our data demonstrated that administration of L. plantarum and inulin could improve gut dysbiosis and oxidative stress status. In addition, it could ameliorate serotonin and BDNF/TrkB signaling pathway. Notably, a strong correlation between the gut microbiota changes and cognition responses was observed. Interestingly, synbiotics intake exploited a rather powerful effect on oxidative stress markers. Conclusion The findings confirm that there is a beneficial therapeutic potential of supplements, especially symbiotic. Moreover, neuropsychological improvement associated with balanced gut microbiome.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ting Xie ◽  
Xiaodong Chen ◽  
Wenyi Chen ◽  
Sien Huang ◽  
Xinye Peng ◽  
...  

Curcumin is a natural polyphenol compound with anti-diabetic, anti-oxidative, and anti-inflammatory effects. Although many studies have reported the protective effect of curcumin in diabetes mellitus or diabetic nephropathy, there is a lack of research on curcumin in diabetic retinopathy. The purpose of this study was to investigate the therapeutic effects of curcumin on the diabetic retinal injury. Streptozotocin (STZ)-induced diabetic rats (60, n = 12 each) were respectively given curcumin orally (200 mg/kg/day), insulin subcutaneously (4–6 IU/day), and combined therapy with curcumin and insulin for 4 weeks. Retinal histopathological changes, oxidative stress markers, and transcriptome profiles from each group were observed. Curcumin, insulin, or combination therapy significantly reduced blood glucose, alleviated oxidative stress, and improved pathological damage in diabetic rats. Curcumin not only significantly reduced retinal edema but also had a better anti-photoreceptor apoptosis effect than insulin. In the early stage of diabetes, the enhancement of oxidative stress in the retina induced the adaptive activation of the nuclear factor E2-associated factor 2 (Nrf2) pathway. Treatment of curcumin alleviated the compensatory activation of the Nrf2 pathway induced by oxidative stress, by virtue of its antioxidant ability to transfer hydrogen atoms to free radicals. When curcumin combined with insulin, the effect of maintaining Nrf2 pathway homeostasis in diabetic rats was better than that of insulin alone. Transcriptomic analyses revealed that curcumin either alone, or combined with insulin, inhibited the AGE-RAGE signaling pathway and the extracellular matrix (ECM)-receptor interaction in the diabetic retina. Thus, at the early stage of diabetes, curcumin can be used to alleviate diabetic retinal injury through its anti-oxidative effect. If taking curcumin as a potential complementary therapeutic option in combination with antihyperglycemic agents, which would lead to more effective therapeutic outcomes against diabetic complications.


2021 ◽  
Vol 13 (1) ◽  
pp. 28-36
Author(s):  
Soleyman Bafadam ◽  
Maryam Mahmoudabady ◽  
Saeed Niazmand ◽  
Seyed Abdolrahim Rezaee ◽  
Mohammad Soukhtanloo

Introduction: Inadequate control of diabetes mellitus (DM) leads to considerable cardiovascular implications like diabetic cardiomyopathy (DCM). Cardiomyocyte apoptosis is one of the main mechanisms of DCM pathogenesis associated with hyperglycemia, oxidative stress, inflammation, hyperlipidemia and several other factors. Trigonella foenum-graecum (Fenugreek) has been long used as a traditional medicine and has many therapeutic effects, including anti-diabetic, anti-hyperlipidemia, anti-inflammatory and anti-oxidant properties. The current study aimed to investigate cardioprotective effects of fenugreek seed on diabetic rats. Methods: Diabetes was induced in forty-two male rats by injection of streptozotocin (STZ) (60 mg/ kg). Diabetic animals were treated with three different doses of fenugreek seed extract (50, 100 and 200 mg/kg) or metformin (300 mg/kg) for six weeks by gavage. Nondiabetic rats served as controls. Glucose, cholesterol, and triglycerides levels were measured in the blood samples, and oxidative stress markers as well as gene expression of ICAM1, Bax and Bcl2 were assessed in the cardiac tissues of the experimental groups. Results: Diabetic rats exhibited increased serum glucose, cholesterol and triglycerides levels, elevated markers of oxidative stress thiobarbituric acid–reacting substances (TBARS) levels , total thiol groups (SH), catalase (CAT) and superoxide dismutase (SOD) activity, and enhanced apoptosis cell death (ratio of Bax/Bcl2). Fenugreek seed extract considerably improved metabolism abnormalities, attenuated oxidative stress and diminished apoptosis index. Conclusion: Our study suggests that fenugreek seed may protect the cardiac structure in STZ-induced diabetic rats by attenuating oxidative stress and apoptosis.


2018 ◽  
Vol 9 (1) ◽  
pp. 110 ◽  
Author(s):  
Saeed Niazmand ◽  
NargesAmel Zabihi ◽  
SeyedMojtaba Mousavi ◽  
Maryam Mahmoudabady ◽  
Mohammad Soukhtanloo ◽  
...  

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
NM De Gouveia ◽  
IB Moraes ◽  
RMF Sousa ◽  
MB Neto ◽  
AV Mundim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document