scholarly journals Water amino acid-chelated trace mineral supplementation decreases circulating and intestinal HSP70 and proinflammatory cytokine gene expression in heat-stressed broiler chickens

2020 ◽  
Vol 98 (3) ◽  
Author(s):  
Mikayla F A Baxter ◽  
Elizabeth S Greene ◽  
Michael T Kidd ◽  
Guillermo Tellez-Isaias ◽  
Sara Orlowski ◽  
...  

Abstract Heat stress (HS) is a financial and physiological burden on the poultry industry and the mitigation of the adverse effects of HS is vital to poultry production sustainability. The purpose of this study was, therefore, to determine the effects of an amino acid-chelated trace mineral supplement on growth performance, stress and inflammatory markers, and meat quality in heat-stressed broilers. One day-old Cobb 500 male broilers (n = 480) were allocated into 12 environmental chambers (24 floor pens) and divided into two groups: one group supplemented with amino acid-chelated trace mineral in drinking water and one control group. On day 28, birds were subjected to chronic heat stress (HS, 2 wk, 35 °C and 20% to 30% RH) or maintained at thermoneutral condition (TN, 24 °C) in a 2 × 2 factorial design. Feed intake (FI), water consumption, and body weight were recorded. At day 42, serum fluorescein isothiocyanate dextran (FITC-D) levels, blood gas, electrolyte, and stress markers were measured. Jejunum samples were collected to measure gene expression of stress, inflammation, and tight junction proteins. The rest of the birds were processed to evaluate carcass traits. HS resulted in an increase in core body temperature, which increased water intake and decreased FI, body weight, and feed efficiency (P < 0.05). HS reduced carcass yield and the weight of all parts (P < 0.05). HS significantly increased levels of circulating corticosterone (CORT), heat shock protein 70 (HSP70), interleukin 18 (IL-18), tumor necrosis factor alpha, C-reactive protein, and nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing 3 expression. HS significantly increased serum FITC-D levels and the expression of HSP70 and IL-18 in the jejunum. Although it did not affect the growth performance, amino acid-chelated trace mineral supplementation reversed the effect of HS by reducing CORT and FITC-D levels and the expression of stress and proinflammatory cytokines in the circulation and the jejunum. However, it upregulated these parameters in birds maintained under TN conditions. Together, these data indicate that the amino acid-chelated trace mineral might alleviate stress and inflammation and improve gut integrity in heat-stressed but not thermoneutral broilers.

2021 ◽  
Vol 12 ◽  
Author(s):  
Elizabeth S. Greene ◽  
Clay Maynard ◽  
Casey M. Owens ◽  
Jean-François Meullenet ◽  
Sami Dridi

Heat stress has strong adverse effects on poultry production and, thereby, threats its sustainability, which energized scientists to search for innovative and effective solutions. Here, we undertook this study to evaluate the effects of in-feed herbal adaptogen (stress response modifier) supplementation on growth performances, meat quality, and breast amino acid profile in chronic cyclic heat-stressed broilers. Day-old male Cobb 500 chicks (n = 720) were randomly assigned, in environmental chambers (n = 12, 24 pens), to three diet-treatments: a three-phase corn-soybean based diet fed as such (Control, C), or supplemented with the herbal adaptogen at 500 g/1000 kg control diet (NR-PHY-500) or at 1 kg/1000 kg control diet (NR-PHY-1000). From d29 to d42, birds from 9 chambers were exposed to cyclic heat stress (HS, 35°C from 9:30 am-5:30 pm), however, the rest of the chamber were maintained at thermoneutral conditions (24°C, TN), which creates 4 experimental groups: C-TN, C-HS, NR-PHY-500HS, and NR-PHY-1000HS (6 pens/group, 168 birds/group). HS altered growth performance via depression of feed intake and body weight. Adaptogen supplementation stimulated feed intake and averaged 65.95 and 83.25 g better body weight and 5 and 10 points better FCR at low and high dose, respectively, compared to heat-stressed birds. This increase in body weight was mirrored in enhanced weights of body parts (breast, tender, wings, and legs). Adaptogen supplementation modulated also breast amino acid profile, pH, color, and quality. Together, these data suggested that adaptogen supplementation could be a promising solution to alleviate heat stress, however further in-depth investigation for its mode of action and its underlying mechanisms are warranted.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sharif Hasan Siddiqui ◽  
Darae Kang ◽  
Jinryong Park ◽  
Mousumee Khan ◽  
Kwanseob Shim

Abstract Chronic heat stress is considered to decrease the immune functions which makes negative effect on broiler growth performance. Here, we investigated the relationship between chronic heat stress, growth performance, and immunity in the small intestine of broilers. The study included two groups (control and heat stressed group) with eight replications per group. Ten broilers of 20-day aged were allocated in each replication. On day 35, the treatment group was subdivided into two groups based on their body weights (heavy and low body weight). Although, there was only the control and treatment group on day 28. The growth performance decreased and expression of heat shock protein 70 (HSP70), HSP60, and HSP47 increased on days 28 and 35 in the chronic heat stress group as compared with those in the control group. The expression levels of HSPs were significantly higher in the low body weight group than in the control group. The genes HSP70 and HSP60 were significantly associated with pro- and anti-inflammatory cytokines in the small intestine of the broilers of the treatment group. Thus, HSP70 and HSP60 activated the adaptive immunity in the small intestines of the broilers from the treatment group to allow adaptation to chronic heat stress environment.


2020 ◽  
Vol 7 (3) ◽  
pp. 121
Author(s):  
Miroslava Šefcová ◽  
Marco Larrea-Álvarez ◽  
César Larrea-Álvarez ◽  
Viera Revajová ◽  
Viera Karaffová ◽  
...  

Due to the interest in using probiotic bacteria in poultry production, this research was focused on evaluating the effects of Lactobacillus fermentum Biocenol CCM 7514 administration on body weight gain and cytokine gene expression in chickens challenged with Campylobacter jejuni. One-hundred and eight 1-day old COBB 500 broiler chickens were equally assigned to four experimental groups at random. In the control group (C) chicks were left untreated, whereas in groups LB and LBCj a suspension of L. fermentum was administered. A suspension of C. jejuni was subsequently applied to groups Cj and LBCj. Body weight was registered, and the individuals were later slaughtered; cecum samples were collected at 12, 36 and 48 h post-infection (hpi). The entire experiment lasted seven days. Reverse transcription quantitative PCR (RT-qPCR) was used to determine expression levels of IL-1β, IL-15, IL-17, and IL-18 at each time point. Pathogen-infected individuals were observed to weigh significantly less than those fed with the probiotic. Significant differences were also found in transcript abundance; expression of IL-15 was downregulated by the probiotic and upregulated by C. jejuni. The effects of bacterial treatments were time-dependent, as the expression profiles differed at later stages. The present outcomes demonstrate that L. fermentum both reduces the impact of C. jejuni infection on chicken body weight and regulates positively pro-inflammatory cytokine expression, which ultimately increase bird well-being and improves production.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 331
Author(s):  
Jung-Yun Lee ◽  
Tae Yang Kim ◽  
Hanna Kang ◽  
Jungbae Oh ◽  
Joo Woong Park ◽  
...  

Excess body weight is a major risk factor for type 2 diabetes (T2D) and associated metabolic complications, and weight loss has been shown to improve glycemic control and decrease morbidity and mortality in T2D patients. Weight-loss strategies using dietary interventions produce a significant decrease in diabetes-related metabolic disturbance. We have previously reported that the supplementation of low molecular chitosan oligosaccharide (GO2KA1) significantly inhibited blood glucose levels in both animals and humans. However, the effect of GO2KA1 on obesity still remains unclear. The aim of the study was to evaluate the anti-obesity effect of GO2KA1 on lipid accumulation and adipogenic gene expression using 3T3-L1 adipocytes in vitro and plasma lipid profiles using a Sprague-Dawley (SD) rat model. Murine 3T3-L1 preadipocytes were stimulated to differentiate under the adipogenic stimulation in the presence and absence of varying concentrations of GO2KA1. Adipocyte differentiation was confirmed by Oil Red O staining of lipids and the expression of adipogenic gene expression. Compared to control group, the cells treated with GO2KA1 significantly decreased in intracellular lipid accumulation with concomitant decreases in the expression of key transcription factors, peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (CEBP/α). Consistently, the mRNA expression of downstream adipogenic target genes such as fatty acid binding protein 4 (FABP4), fatty acid synthase (FAS), were significantly lower in the GO2KA1-treated group than in the control group. In vivo, male SD rats were fed a high fat diet (HFD) for 6 weeks to induced obesity, followed by oral administration of GO2KA1 at 0.1 g/kg/body weight or vehicle control in HFD. We assessed body weight, food intake, plasma lipids, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) for liver function, and serum level of adiponectin, a marker for obesity-mediated metabolic syndrome. Compared to control group GO2KA1 significantly suppressed body weight gain (185.8 ± 8.8 g vs. 211.6 ± 20.1 g, p < 0.05) with no significant difference in food intake. The serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) levels were significantly lower in the GO2KA1-treated group than in the control group, whereas the high-density lipoprotein (HDL) level was higher in the GO2KA1 group. The GO2KA1-treated group also showed a significant reduction in ALT and AST levels compared to the control. Moreover, serum adiponectin levels were significantly 1.5-folder higher than the control group. These in vivo and in vitro findings suggest that dietary supplementation of GO2KA1 may prevent diet-induced weight gain and the anti-obesity effect is mediated in part by inhibiting adipogenesis and increasing adiponectin level.


Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1374
Author(s):  
Bingbing Huang ◽  
Huangwei Shi ◽  
Li Wang ◽  
Lu Wang ◽  
Zhiqian Lyu ◽  
...  

This study was conducted to determine the effects of low-protein diet prepared with different levels of defatted rice bran (DFRB) and weight stages on growth performance and nutrient digestibility of growing–finishing pigs. The animal experiment included three stages. A total of 240 growing pigs with an initial body weight of 28.06 ± 8.56 kg for stage 1 were allocated to five diets including one control group and four DFRB diets supplemented with 2.5%, 5%, 7.5% and 10% DFRB, respectively. The 192 crossbred pigs with initial body weights of 55.03 ± 7.31 kg and 74.55 ± 9.10 kg were selected for stage 2 and stage 3, respectively. Pigs were allocated to four diets including one control group and three DFRB diets supplemented with 10%, 15% and 20% DFRB, respectively. The results showed that with the increase in DFEB intake, the gain: feed was linearly increased (p < 0.05), and the average daily feed intake tended to linearly decrease (p = 0.06) in stage 1. Except for the apparent total tract digestibility (ATTD) of acid detergent fiber (ADF) in stage 3, levels of DFRB had significant effects on the ATTD of gross energy (GE), dry matter (DM), ash, neutral detergent fiber (NDF) and ADF in three weight stages. In stage 1, with the increase in levels of DFRB, the ATTD of NDF and hemicellulose were firstly increased and then decreased (p < 0.01). In stage 2, with the increasing levels of DFRB, the ATTD of DM, ash and cellulose were firstly increased and then decreased (p < 0.01). In stage 3, the ATTD of GE, DM, ash, NDF and hemicellulose decreased linearly with the increase in levels of DFRB (p < 0.01). Collectively, DFRB could be used as a replacement for corns and soybean meal, and weight stage is important to consider when adjusting the additive proportion.


Aquaculture ◽  
2022 ◽  
Vol 546 ◽  
pp. 737418
Author(s):  
Zulhisyam Abdul Kari ◽  
Muhammad Anamul Kabir ◽  
Mahmoud A.O. Dawood ◽  
Mohammad Khairul Azhar Abdul Razab ◽  
Nik Shahman Nik Ahmad Ariff ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Akshat Goel ◽  
Chris Major Ncho ◽  
Chae-Mi Jeong ◽  
Yang-Ho Choi

Chickens are exposed to numerous types of stress from hatching to shipping, influencing poultry production. Embryonic manipulation may develop resistance against several stressors. This study investigates the effects of thermoneutral temperature (T0; 37.8°C) with no injection (N0) (T0N0), T0 with 0.6 ml of 10% in ovo gamma-aminobutyric acid (GABA) supplementation (N1) at 17.5th embryonic day (ED) (T0N1), thermal manipulation (T1) at 39.6°C from the 10th to 18th ED (6 h/day) with N0 (T1N0), and T1 with N1 (T1N1) on hatchability parameters and hepatic expression of stress-related genes in day-old Arbor Acres chicks. The parameters determined were hatchability, body weight (BW), organ weight, hepatic malondialdehyde (MDA), and antioxidant-related gene expression. Percent hatchability was calculated on a fertile egg basis. Growth performance was analyzed using each chick as an experimental unit. Eight birds per group were used for organ weight. Two-way ANOVA was used taking temperature and GABA as the main effect for growth performance and gene expression studies. Analysis was performed using an IBM SPSS statistics software package 25.0 (IBM software, Chicago, IL, USA). Hatchability was similar in all the groups and was slightly lower in the T1N1. Higher BW was recorded in both T1 and N1. Intestinal weight and MDA were higher in T0N1 against T0N0 and T1N1, respectively. The expression of HSP70, HSP90, NOX1, and NOX4 genes was higher and SOD and CAT genes were lower in the T1 group. The present results show that T1 and N1 independently improve the BW of broiler chicks at hatch, but T1 strongly regulates stress-related gene expression and suggests that both T1 and N1 during incubation can improve performance and alleviate stress after hatch.


Author(s):  
Sandra Villagómez-Estrada ◽  
José F Pérez ◽  
Sandra van Kuijk ◽  
Diego Melo-Durán ◽  
Asal Forouzandeh ◽  
...  

Abstract The aim of the present study was to evaluate the effect of trace mineral nutrition on sow performance, mineral content, and intestinal gene expression of neonate piglets when inorganic mineral sources (ITM) were partially replaced by their organic mineral (OTM) counterparts. At 35 d post-mating, under commercial conditions, a total of 240 hyperprolific multiparous sows were allocated into three experimental diets: 1) ITM: with Zn, Cu, and Mn at 80, 15, and 60 mg/kg, respectively; 2) Replace: with a 30 % replacement of ITM by OTM, resulting in ITM + OTM supplementation of Zn (56 + 24 mg/kg), Cu (10.5 + 4.5 mg/kg), and Mn (42 + 18 mg/kg); and 3) Reduce and replace (R&R): reducing a 50 % of the ITM source of Zn (40 + 24 mg/kg), Cu (7.5 + 4.5 mg/kg), and Mn (30 + 18 mg/kg). At farrowing, 40 piglets were selected, based on birth weight (light: &lt; 800 g, and average: &gt; 1,200 g), for sampling. Since the present study aimed to reflect results under commercial conditions, it was difficult to get an equal parity number between the experimental diets. Overall, no differences between experimental diets on sow reproductive performance were observed. Light piglets had a lower mineral content (P &lt; 0.05) and a downregulation of several genes (P &lt; 0.10) involved in physiological functions compared to their average littermates. Neonate piglets born from Replace sows had an upregulation of genes involved in functions like: Immunity and Gut barrier, compared to those born from ITM sows (P &lt; 0.10), particularly in light piglets. In conclusion, the partial replacement of ITM by their OTM counterparts represents an alternative to the totally inorganic supplementation with improvements on neonate piglet gene expression, particularly in the smallest piglets of the litter. The lower trace mineral storage together with the greater downregulation of gut health genes exposed the immaturity and vulnerability of small piglets.


2013 ◽  
Vol 42 (1) ◽  
pp. 40-43 ◽  
Author(s):  
S Yesmin ◽  
ME Uddin ◽  
R Chacrabati ◽  
M Al-Mamun

The present study was conducted to evaluate the effect of different levels of methionine supplementation on feed intake, nutrient digestibility and growth performance of growing rabbit. Sixteen weaned crossbred New Zealand White (NZW) growing rabbits (30-35 d) were distributed into four treatment groups having four replications in each group using a Completely Randomized Design (CRD). Basal diet composed of green grass (dhal grass) and concentrate mixture which was offered ad libitum basis for 56 days period. Four levels of methionine such as 0.0% (control), 0.15%, 0.25%, and 0.35% were supplemented randomly to rabbits. Results showed that supplementation of methionine did not affect green grass intake. Cumulative as well as daily concentrate and DM intake were significantly (p<0.05) higher for all methionine groups than control group. Final body weight gain as well as daily, weekly and cumulative body weight gains were improved significantly with increasing level of methionine. It was found that methionine had significant (p<0.01) effect on digestibility of DM, CP, NFE and EE but CF digestibility did not differ significantly. Digestibility was improved with increasing the level of methionine. Feed conversion ratio also decreased significantly with methionine supplementation, and 0.25% methionine group showed the best performance among the four treatments. DOI: http://dx.doi.org/10.3329/bjas.v42i1.15777 Bang. J. Anim. Sci. 2013. 42 (1): 40 43


Sign in / Sign up

Export Citation Format

Share Document